锂电池组的能量非耗散型管理系统设计
发布时间:2018-06-24 23:39
本文选题:锂电池组 + 超级电容组 ; 参考:《吉林大学》2017年硕士论文
【摘要】:本文通过对电池组的几种能量非耗散型均衡拓扑方案对比,结合其优势,描述了一种用于锂电池组的能量非耗散型管理系统的设计方案。不仅可以对电池组进行监控保护,还可以提高电池组的能量利用率。本文系统设计的最大特点就是在管理电池组的过程中,将需要耗散掉的能量,集中在超级电容组中,将储存的能量在适当情况下反哺给电池组以延长续航能力。本文描述的锂电池组的能量非耗散型管理系统主要以意法半导体的高性能芯片STM32F107VCT6作为主控芯片,将电池组和电容组的电压,电流,温度等信息通过CAN通讯和TCP/IP通讯传送至上位机显示,同时分析处理数据、制定均衡策略、计算电池组荷电状态,合理保护锂电池组。电池组和电容组的数据信息主要依靠硬件电路设计的监控管理单元得到;数据的通讯、均衡策略、SOC计算由下位机软件灵活的C语言程序编写实现;数据显示由上位机软件C#基于Visual Studio 2010的WinForm平台编写实现,该上位机界面可以更加简洁直观的观察每个电池单体的工作状况,通过观察电压,电流和温度的变化,及时分析出异常状态并采取措施,有效阻止电池组的损害,对锂电池组的严格监控,一方面防止了锂电池单体的损害,延长了整个电池组的使用寿命,另一方面保护了整车的安全。本文描述的锂电池组的能量非耗散型管理系统因为超级电容组存在比功率大的特点,更适用于纯电动汽车,可满足纯电动汽车的瞬时启动和快充的需求。所以本文的系统设计不仅可以对锂电池组进行保护管理,而且可以拓展为复合电源管理,后者不作为本文讨论内容。
[Abstract]:In this paper, a design scheme of energy nondissipative management system for lithium battery pack is described by comparing several energy nondissipative topology schemes of battery pack and combining its advantages. Not only the battery pack can be monitored and protected, but also the battery energy efficiency can be improved. The main feature of the system design is that in the process of managing the battery pack, the energy that needs to be dissipated is concentrated in the super capacitor group, and the stored energy is fed back to the battery pack to prolong the battery life capacity under appropriate conditions. The non-dissipative energy management system described in this paper mainly uses STM32F107VCT6, a high performance chip of Italian semiconductor, as the main control chip. The temperature information is transmitted to the upper computer through can communication and TCP / IP communication. At the same time, the data are analyzed and processed, the equalization strategy is formulated, the charge state of the battery pack is calculated, and the lithium battery is reasonably protected. The data information of battery pack and capacitor group is mainly obtained by the monitor and management unit designed by hardware circuit, and the communication of data and the calculation of SOC based on equalization strategy are realized by C language program with flexible lower computer software. The data display is programmed by the upper computer software C # based on the WinForm platform of Visual Studio 2010. The upper computer interface can observe the working condition of each cell more succinctly and intuitively, and observe the changes of voltage, current and temperature. Analyzing the abnormal state in time and taking measures to effectively prevent the damage of the battery pack and strictly monitor the lithium battery pack, on the one hand, prevent the damage of the lithium cell monomer and prolong the service life of the whole battery pack, On the other hand, it protects the safety of the whole car. The energy nondissipative management system of lithium battery pack described in this paper is more suitable for pure electric vehicle because of its high specific power and can meet the needs of instantaneous start-up and fast charging of pure electric vehicle. Therefore, the system design of this paper can not only protect the lithium battery pack management, but also can be extended to compound power management, the latter is not discussed in this paper.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM912
【参考文献】
相关期刊论文 前5条
1 金立江;;我国纯电动汽车发展现状及推广策略研究[J];现代经济信息;2016年01期
2 于鹏;杨仁刚;;超级电容串联储能系统的并联电容均压方法[J];农业工程学报;2014年24期
3 徐亮;颜兆林;孙权;潘正强;;基于结构逻辑树的电池组SOC估算[J];电源技术;2014年12期
4 罗清t,
本文编号:2063505
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2063505.html