当前位置:主页 > 科技论文 > 电气论文 >

永磁自旋式新型机械变磁通永磁电机设计与调磁机理研究

发布时间:2018-07-04 10:24

  本文选题:永磁电机 + 机械调磁 ; 参考:《江西理工大学》2017年硕士论文


【摘要】:针对永磁电机的气隙磁场难以灵活调节的问题,本文将机械调磁方式引入永磁电机中,并结合内置式永磁同步电机的优点,创新性地提出一种永磁自旋式新型机械变磁通永磁电机。该类电机为内置式永磁同步电机和机械调磁装置的综合体,在克服现有机械调磁电机不足的同时,将具有结构简单、运行可靠、转矩密度高及磁场调节能力好等诸多优点。本文在研究该新型电机的工作原理及调磁机理的基础上,利用虚拟样机技术,展开机械动力学仿真;通过ANSYS/Maxwell中稳态磁场和瞬态磁场计算,分析电机的电磁特性以及磁场调节能力。本文主要研究工作及成果如下:(1)电机的本体结构与工作原理。在丰田Prius 2004电动汽车用内置式永磁电机的基础上,将圆柱形永磁体替代其长方形永磁体,通过改变永磁体充磁方向,削弱电机主磁通和改变电机内部气隙磁场的分布。(2)机械调磁装置结构与工作原理。提出了两种机械调磁装置,其一为实现每极下永磁体自旋转的机械调磁装置,另一种为半数极下永磁体自旋转的机械调磁装置。机械调磁装置的工作原理为当机械调磁装置与转子同步旋转时,机械调磁装置中的滑块将产生离心力,推动齿轮自旋转。齿轮与永磁体之间存在传动连杆,齿轮自旋转将带动永磁体自旋转。(3)机械设计与动力学仿真。对所提出的机械调磁装置中的各个部件进行参数设计,使机械调磁装置中的各部件能实现连续性传动;利用虚拟样机技术,对机械调磁装置进行机械动力学仿真分析,得到了不同转速下弹簧形变量,弹簧形变量与齿轮的自旋转弧度相等。(4)机械设计与动力学仿真。对所提出的机械调磁装置中的各个部件进行参数设计,使机械调磁装置中的各部件能实现连续性传动;利用虚拟样机技术,对机械调磁装置进行机械动力学仿真分析,得到了不同转速下弹簧形变量,弹簧形变量与齿轮的自旋转弧度相等。(5)电机电磁特性分析。分析计算了电机在基速时无调磁、基速以上4极和8极永磁体自旋转的电磁特性,如磁场分布、气隙磁通密度、绕组磁链、感应电动势、绕组自感与互感、直交轴电感以及电机损耗,获得了永磁体自旋转角度与弱磁效果的关系。分析表明:通过机械调磁装置的作用,可以有效调节电机内部磁场,达到恒压发电的效果,验证了电机设计的合理性。
[Abstract]:In order to solve the problem that the air-gap magnetic field of permanent magnet motor is difficult to adjust flexibly, this paper introduces the mechanical magnetic adjustment method into the permanent magnet motor and combines the advantages of built-in permanent magnet synchronous motor. A new type of permanent magnet spin-type mechanical variable flux permanent magnet motor is proposed. This kind of motor is a complex of built-in permanent magnet synchronous motor and mechanical magnetic adjusting device. It will have many advantages such as simple structure, reliable operation, high torque density and good adjusting ability of magnetic field. On the basis of studying the working principle and magnetic adjusting mechanism of the new motor, this paper makes use of the virtual prototype technology to develop the mechanical dynamics simulation, and calculates the steady and transient magnetic field in ANSYS / Maxwell. Analysis of the electromagnetic characteristics of the motor and the ability to adjust the magnetic field. The main research work and results are as follows: (1) the structure and working principle of motor. On the basis of the built-in permanent magnet motor used in the Toyota Prius 2004 electric vehicle, the cylindrical permanent magnet is replaced by the rectangular permanent magnet, and by changing the direction of the permanent magnet, Weakening the main flux of the motor and changing the distribution of the air-gap magnetic field in the motor. (2) the structure and working principle of the mechanical magnetic adjusting device. Two kinds of mechanical magnetic adjusting devices are proposed. One is the mechanical magnetic adjusting device for realizing the self-rotation of the permanent magnet at each pole, the other is the mechanical magnetic adjusting device for the self-rotation of the permanent magnet at the half pole. The working principle of the mechanical magnetic adjusting device is that when the mechanical magnetic adjusting device rotates synchronously with the rotor, the slider in the mechanical magnetic adjusting device will produce centrifugal force and promote the gear self-rotation. There is a transmission link between the gear and the permanent magnet, and the self-rotation of the gear will drive the self-rotation of the permanent magnet. (3) Mechanical design and dynamic simulation. The parameters of each component of the mechanical magnetic adjusting device are designed to make the components of the mechanical magnetic adjusting device realize continuous transmission, and the mechanical dynamics simulation analysis of the mechanical magnetic adjusting device is carried out by using the virtual prototype technology. The spring-shaped variables at different rotational speeds are equal to the self-rotating radians of gears. (4) Mechanical design and dynamic simulation. The parameters of each component of the mechanical magnetic adjusting device are designed to make the components of the mechanical magnetic adjusting device realize continuous transmission, and the mechanical dynamics simulation analysis of the mechanical magnetic adjusting device is carried out by using the virtual prototype technology. The spring-shaped variable at different rotational speeds is equal to the self-rotating radians of the gear. (5) the electromagnetic characteristics of the motor are analyzed. The electromagnetic characteristics such as magnetic field distribution, air gap flux density, winding flux chain, inductive electromotive force, winding self-inductance and mutual inductance are analyzed and calculated. The relationship between the self-rotating angle of permanent magnet and the weak magnetic effect is obtained by direct axis inductance and motor loss. The analysis shows that the internal magnetic field of the motor can be adjusted effectively by the action of the mechanical magnetic adjusting device, and the effect of constant voltage power generation can be achieved, which verifies the rationality of the motor design.
【学位授予单位】:江西理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM351

【参考文献】

相关期刊论文 前10条

1 刘细平;陈栋;王敏;黄跃飞;谢清华;;变磁通轴向磁场永磁电机机械动力学分析与弱磁能力研究[J];电工技术学报;2016年23期

2 叶俊;汪永明;宋嵩;;基于虚拟样机技术的过山车立轴瞬态应力分析[J];机电工程;2016年08期

3 刘毓希;高钦和;冯江涛;程祥瑞;;杠杆平衡式起竖机构的结构优化研究[J];机械传动;2016年08期

4 姜立标;何家寿;;两轮自平衡代步车控制策略及动力学仿真[J];华南理工大学学报(自然科学版);2016年01期

5 张健;吴友华;姚丙雷;陈伟华;窦娜;;应用于新能源电动汽车的永磁辅助同步磁阻电机设计[J];电机与控制应用;2016年01期

6 柴凤;毕云龙;;轴向磁场永磁同步电机弱磁方法综述[J];微电机;2015年02期

7 黄允凯;周涛;;基于等效磁路法的轴向永磁电机效率优化设计[J];电工技术学报;2015年02期

8 黄允凯;周涛;董剑宁;郭保成;张莉;;轴向永磁电机及其研究发展综述[J];中国电机工程学报;2015年01期

9 赵纪龙;林明耀;付兴贺;黄允凯;徐妲;;混合励磁同步电机及其控制技术综述和新进展[J];中国电机工程学报;2014年33期

10 王萌;杨家强;张翔;祝长生;;一种表贴式永磁同步电机电流矢量闭环I/f控制方法[J];中国电机工程学报;2015年10期

相关博士学位论文 前2条

1 陈浈斐;表贴式永磁同步电机建模、分析与设计[D];天津大学;2014年

2 沈启平;车用高功率密度永磁同步电机的研究[D];沈阳工业大学;2012年

相关硕士学位论文 前8条

1 孙泽敏;基于ADAMS的某车悬架系统运动学仿真及优化[D];长春工业大学;2014年

2 欧景;双定子锥形永磁同步电机的弱磁研究[D];哈尔滨工业大学;2013年

3 石佳;双定子锥形永磁同步电机的基础研究[D];哈尔滨工业大学;2012年

4 徐杰;基于ADAMS的岸边集装箱起重机结构动力学仿真研究[D];武汉理工大学;2010年

5 冯勇利;风力发电用双转子盘式永磁发电机研究[D];哈尔滨理工大学;2009年

6 陆伟;轴向磁场无槽永磁同步电机的电磁场分析[D];华中科技大学;2007年

7 何东霞;风力发电用盘式永磁同步发电机的设计研究[D];湖南大学;2006年

8 王凌峰;盘式永磁无刷直流电机的电磁设计[D];浙江大学;2005年



本文编号:2095757

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2095757.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户45170***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com