计及用户舒适度的空调负荷参与电力系统频率控制研究
[Abstract]:Traditionally, the power system makes use of the reserve resources of the generation side to adjust the frequency, and the frequency adjustment and the secondary adjustment can meet the frequency quality requirements of the power system at various time scales. However, with the change of generation side structure, especially the increase of power generation ratio of nuclear power and intermittent energy, the capacity of generating side to provide reserve is decreased. At the same time, the economic cost and environmental cost of power generation of large capacity thermal power units are increasing day by day. It is not enough to rely on the generation side resources to adjust the frequency, and the potential of exploiting the load side resources has been paid more and more attention. Air conditioning load, as a typical constant temperature control load and household load, accounts for an increasing proportion of the load during the summer peak period, which has the potential to provide backup load. At the same time, because of its inherent heat storage performance, it can adjust the working state in a short time without affecting the utility of the user, reduce its own power demand, and then achieve the purpose of adjusting the frequency. For air conditioning load, the user's utility is mainly thermal comfort. Based on two factors, temperature and humidity, a two-layer fuzzy evaluation model of user thermal comfort is put forward, and the control strategy of individual self-responding frequency signal of air conditioning load is put forward in this paper. Adjust the temperature according to the degree of comfort and the frequency deviation of power system. Experiments are designed to verify the effectiveness of the proposed thermal comfort model and air conditioning control strategy. Although the reduction of individual air conditioning power demand has little effect on the power imbalance of the whole power grid, when a large number of air conditioning loads in the study area are adjusted to reduce the aggregate power of the load cluster, The imbalance between generation power and load power will be improved to reduce the frequency of power grid. Based on the existing third order physical model of air conditioning, Monte Carlo simulation method is used to sample the parameters of the model. The air conditioning load in the studied area is aggregated and its aggregation characteristics are mapped to the corresponding load nodes. In this paper, a dynamic model of power grid with air conditioning load is proposed. Because the aggregate power of air conditioning load group is changing dynamically and the nodal voltage and injection current are nonlinear, the aggregation characteristics of air conditioning load group can not be expressed as static ZIP model. Nor can a dynamic model for induction motors be adopted. In order to adapt to the aggregation characteristics of air conditioning, the inner layer and outer layer iterative algorithm is designed to study the dynamic process of power grid. The inner layer iteration is used to solve the network equation, and the outer layer iteration is used to solve the differential generation equations. The influence of air conditioning load control strategy on system frequency is analyzed. In the process of realization of air conditioning load control, because a large number of air conditioning load state information and data need to be transmitted and processed, so the transmission ability of information is tested. In this paper, considering the limitation of information and communication technology, the realization mechanism of interactive simulation control strategy for air conditioning load control based on Cyber physical system (CPS) is proposed. OpenDSS is used as the simulation platform of power system, and MATLAB is used as the control platform to realize the data communication and time synchronization between the two software. Based on the IEEE 13-bus distribution network model, the paper analyzes the influence and limitation of communication technology on the realization of load control through the example simulation on CPS simulation platform.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TM761.2
【相似文献】
相关期刊论文 前10条
1 郑就;;中央空调负荷采用计算机软件的计算与分析[J];制冷与空调(四川);2008年04期
2 刘馨宜;;空调负荷控制策略分析[J];科技资讯;2009年35期
3 卢丽;宗通;王国磊;;建筑遮挡对空调负荷影响的分析与探讨[J];中国住宅设施;2011年02期
4 李斌;林弘宇;徐石明;颜庆国;肖文举;张磊;杨永标;;智能电网框架下公共楼宇空调负荷资源化应用[J];供用电;2014年03期
5 李英娜,顾平道,庄琛;大中型商场空调负荷影响因素的探讨[J];应用能源技术;2004年02期
6 温权,李敬如,赵静;空调负荷计算方法及应用[J];电力需求侧管理;2005年04期
7 李东梅;李敬如;赵静;温权;;北京空调负荷结构及调控措施研究[J];电力技术经济;2005年06期
8 李民;朱慰慈;;2005年夏季镇江地区空调负荷特点分析[J];江苏电机工程;2006年02期
9 杨洁;张旭;王凌飞;;上海世博会展馆建筑空调负荷指标的影响因素分析[J];暖通空调;2006年09期
10 陶勇;沈颖;;夏季气象条件对地区空调负荷的影响[J];华东电力;2006年10期
相关会议论文 前10条
1 张春路;李灏;丁国良;陈芝久;;空调负荷新型计算方法研究[A];上海市制冷学会一九九七年学术年会论文集[C];1997年
2 林真国;付祥钊;张素云;;论由照明引起的空调负荷计算[A];全国暖通空调制冷2000年学术年会论文集[C];2000年
3 蒋骞;龙惟定;;双层立面建筑的空调负荷计算[A];第13届全国暖通空调技术信息网技术交流大会文集[C];2005年
4 龙洋波;吴祥生;孙秀平;;几种常见空调负荷动态计算方法介绍[A];2005西南地区暖通空调热能动力年会论文集[C];2005年
5 何大四;张旭;;改进的季节性指数平滑法预测空调负荷实例研究[A];全国暖通空调制冷2004年学术年会资料摘要集(2)[C];2004年
6 周娟;陈友明;胡敏;;空调负荷计算新方法的应用研究[A];全国暖通空调制冷2004年学术年会资料摘要集(2)[C];2004年
7 高立新;陆亚俊;;智能化空调负荷计算软件的开发[A];全国暖通空调制冷2004年学术年会资料摘要集(2)[C];2004年
8 张春路;李灏;丁国良;陈芝久;;空调负荷新型计算方法研究[A];全国暖通空调制冷1998年学术年会论文集(2)[C];1998年
9 何大四;张旭;;改进的季节性指数平滑法预测空调负荷的实例研究[A];上海市制冷学会二○○三年学术年会论文集[C];2003年
10 王春丽;李晓冬;;分层空调负荷与温度场动态多区热质平衡模型探讨[A];全国暖通空调制冷2004年学术年会资料摘要集(2)[C];2004年
相关重要报纸文章 前2条
1 蓝旺;给空调负荷“降温”[N];中国电力报;2004年
2 ;空调负荷来势凶猛 电网企业应对有力[N];国家电网报;2012年
相关硕士学位论文 前10条
1 陆婷婷;空调负荷的储能建模和控制策略研究[D];东南大学;2015年
2 张荣祥;计及用户舒适度的空调负荷参与电力系统频率控制研究[D];山东大学;2016年
3 张志强;基于电网侧的空调负荷特性分析及其调控措施研究[D];华北电力大学(北京);2007年
4 糜作维;空调负荷的预测与建模[D];河海大学;2006年
5 李育燕;空调负荷的特性分析与建模[D];河海大学;2004年
6 宁勇飞;夏热冬冷地区住宅空调负荷特征与节能分析[D];南华大学;2006年
7 徐涛;基于舒适度的空调负荷分析及古建舒适度研究[D];安徽建筑大学;2014年
8 尹璐;空调负荷特性分析及其对电压稳定性的影响[D];郑州大学;2015年
9 周娟;空调负荷计算新方法的应用研究[D];湖南大学;2004年
10 孙德宇;空调负荷计算方法及软件比对分析研究[D];中国建筑科学研究院;2011年
,本文编号:2119687
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2119687.html