电力系统扩展频率响应模型及综合程序研发
[Abstract]:In recent years, the frequency crashes caused by the large frequency shift of the power system and the large blackout at home and abroad are increasing. With the large-scale renewable energy access to the power system, the frequency offset of the power system will become greater when the power system is connected to the power system, and the frequency offset is beyond the power system permission. In the range, the probability of the cascading failure of the power system is greatly increased because of the frequency offset, and the frequency collapse may even occur in serious cases. Most of the researches on the frequency are based on the frequency response curve, and the full time domain simulation model and the simplified frequency response model are the most effective ways to obtain the frequency response of the power system. But the simplified model does not take into account the interaction between the frequency and the dynamic characteristics of the boiler / auxiliary equipment. Because there are a large number of auxiliary equipment in the thermal power plant, its output is closely related to the frequency, and the output of the auxiliary machine will affect the generator's output. Therefore, the power system is better described in a large frequency range migration. The frequency response characteristic of the system needs to set up a frequency response expansion model considering the effect of frequency offset on the boiler / auxiliary engine. With the continuous expansion of the system scale, the time required for the whole time domain is gradually unable to meet the demand for rapid solution. Therefore, it is necessary to ensure that the model can be fast through the simplified model in the range of the acceptable precision. The frequency response curve of the power system is solved. The full time domain simulation has been widely used in many commercial software, but there is still a lack of the software package for the simplified model frequency response calculation. Therefore, the development of a comprehensive software package for the frequency response calculation of the power system is very important for the study of the safety and stability of frequency and the emergency control. The main contents of this paper are as follows: firstly, based on the characteristics and dynamic behavior of the boiler, steam turbine speed control system, generator rotor equation and power plant auxiliary machine (feed water pump), a frequency response extended mode considering the effect of frequency offset on boiler / auxiliary engine is established. The model takes into account the boiler drum pressure and the main steam pressure. The control system, the coordination control system of the "furnace heel machine" and the regulation process of the main steam flow and feed water flow rate of the feed pump. This paper studies the corresponding relation of the parameters in the model. By analyzing the actual running data and fitting the data, the mathematical connection between the parameters in the extended model is established. Secondly, the extended mode of the system frequency response is studied. The influence of the type on the frequency stability of the system. Through the expansion model, the frequency stability of the system is analyzed in the case of the influence of frequency on the auxiliary engine (feed water pump). In the extended model, the water flow is the main control quantity, the input of the boiler fuel is controlled by the effect of frequency on the water flow, and then the output of the generator is controlled indirectly. The purpose of power is to describe the frequency characteristics of the system when a large frequency shift occurs in a power system. Then, in order to further analyze the static characteristics of the system frequency, the frequency response expansion model described above is the research object. By applying the fixed load sudden increase disturbance, the next power frequency operation point is simulated and repeated. The above steps finally get the static power frequency characteristic curve of the generator set in a larger frequency range. Based on the static power frequency curve obtained, the static stable operation region and the stable region boundary are put forward, and the static stability analysis and transient stability analysis are carried out, and the "frequency instability" leveling is further discovered and proposed. In the end, full time domain simulation has more mature commercial software and has been widely used. However, there is still a lack of software support for frequency response computing packages based on simplified methods. Developing a software package that covers these simplified models can greatly increase the systematicness and flexibility of frequency dynamic analysis. The software package program uses the common advanced language (Python) and compiler, the program structure has the modular structure. The application of the program application interface can better reflect the features of the programmability and openness of the software package. The program application interface can not only realize the basic program function, but also realize the more complex advanced application. The application of the program application interface is realized. Functional and advanced applications include frequency response calculation, low frequency load shedding, frequency safety assessment and critical load shedding.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM712;TP311.52
【相似文献】
相关期刊论文 前10条
1 熊建国;;《动载设计:模型分析的应用》[J];世界地震工程;1984年04期
2 M.S.Troitsky ,B.E.Lazar ,戴振藩;斜拉桥的模型分析与设计[J];国外桥梁;1979年03期
3 卢正安;;积宽法测流模型分析[J];人民长江;1982年05期
4 罗荣桂;沈军;;企业间的商战模型分析[J];武汉理工大学学报;2006年12期
5 J.G.厄普顿;李振平;;聚落模型的距离与方向分析[J];地理译报;1988年03期
6 寇小萱;王彦越;董明;;企业资源系统的序化管理模型分析[J];科技与管理;2006年02期
7 马斌;张富饶;;广东城乡收入差距的一个模型分析[J];徐州工程学院学报;2008年03期
8 E.A.霍泽费尔;张玉英;;地面灌溉优化模型[J];河海大学科技情报;1987年03期
9 凌静;高镇同;;二维应力——强度干涉模型[J];机械强度;1989年04期
10 周康渠;翁昵;王炳杰;姚长鑫;;某汽车企业零部件采购量价模型分析[J];重庆理工大学学报(自然科学版);2010年05期
相关会议论文 前10条
1 钱林晓;王一涛;;对应试教育条件下学生学习行为的模型分析[A];2005年中国教育经济学年会会议论文集[C];2005年
2 高林;刘喜梅;;多模型中权值确定的新方法及其应用[A];2009年中国智能自动化会议论文集(第二分册)[C];2009年
3 朱萍;刘伟泽;万立滨;;基于实证研究的知识管理路线、方法和模型分析[A];航空工业档案学会七届四次理事会暨2013年度优秀论文交流会论文集[C];2013年
4 潘洁;周宗放;;全流通下KMV模型中的违约点修正及实证研究[A];中国企业运筹学[C];2009年
5 肖田元;;仿真是基于模型的活动[A];新观点新学说学术沙龙文集37:仿真是基于模型的实验吗[C];2009年
6 毛曹珏;曹锐;;两种缺陷接地结构的模型分析[A];2007年全国微波毫米波会议论文集(下册)[C];2007年
7 吴义忠;陈立平;张昌杰;;基于多领域模型分析的参数优化研究[A];庆祝中国力学学会成立50周年暨中国力学学会学术大会’2007论文摘要集(下)[C];2007年
8 董维中;;气体模型对钝体高超声速流动数值计算影响的分析[A];第十届全国计算流体力学会议论文集[C];2000年
9 侯建荣;黄培清;;基于Ito随机微分方程的客户群变动模型分析[A];2004年中国管理科学学术会议论文集[C];2004年
10 肖婷婷;;经典的逃税模型及其两周期扩展[A];第四届中国不确定系统年会论文集[C];2006年
相关重要报纸文章 前3条
1 范超;浅谈如何备战统计建模大赛[N];中国信息报;2011年
2 媛萍;用模型分析企业战略要素[N];中国高新技术产业导报;2002年
3 牛津大学博士 阿姆斯(RMS)风险管理公司亚太地区代表 高航;由近期亚太地区地震看巨灾风险[N];中国保险报;2012年
相关博士学位论文 前10条
1 李瑜;多选题认知诊断测验编制及多策略的多选题认知诊断模型的开发[D];江西师范大学;2014年
2 康慧燕;复杂网络上带有潜伏期的传染病动力学模型研究[D];上海大学;2015年
3 郭玮;基于多因素集成的疏散场模型研究[D];北京化工大学;2015年
4 张天蛟;产漂流性卵小型鱼类的生态位建模及分析[D];中国农业大学;2016年
5 张会敏;基于小域估计的贫困指标测度方法与模型研究[D];天津财经大学;2015年
6 宋泽芳;基于投资者情绪效应的均值—方差关系模型研究[D];广州大学;2016年
7 徐帆;笼养食蟹猴自发抑郁模型的创建与验证[D];重庆医科大学;2015年
8 毕仁贵;考虑相关性的不确定凸集模型与非概率可靠性分析方法[D];湖南大学;2015年
9 卢伟;小时步长森林碳循环模型(BEPS)参数优化及应用研究[D];东北林业大学;2016年
10 周作建;移动云环境下服务推荐模型及关键技术研究[D];南京大学;2016年
相关硕士学位论文 前10条
1 朱嘉蕊;基于科技接受模型的云出版服务模式研究[D];武汉理工大学;2014年
2 李昂;BIM技术在工程建设项目中模型创建和碰撞检测的应用研究[D];东北林业大学;2015年
3 顾慧燕;预测有机碳-水分配系数pp-LFERs模型的改进研究[D];中国地质大学(北京);2015年
4 马豪;卫生管理决策支持系统的模型构建研究[D];北京协和医学院;2015年
5 王海波;基于GARCH模型的沪深300指数收益率的波动性研究[D];西安建筑科技大学;2015年
6 郭滨;基于Kriging与改进灰色组合模型的边坡变形分析研究[D];江西理工大学;2015年
7 邢立雯;CEV模型最优参数的实证研究[D];山东大学;2015年
8 王泽森;基于Ⅳ级动态逸度模型京津冀地区硫的多介质迁移转化[D];华北电力大学;2015年
9 李欢;大规模网络零模型的高效量化评估策略研究[D];北京化工大学;2015年
10 薛文旅;小学数学《方程》单元教学中渗透模型思想的研究[D];南京师范大学;2015年
,本文编号:2125269
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2125269.html