基于变分贝叶斯学习的光伏功率波动特性研究
发布时间:2018-07-20 16:44
【摘要】:光伏出力波动严重影响电力系统稳定运行。对光伏出力爬坡率进行分析,建立光伏出力爬坡率的高斯混合模型,并用变分贝叶斯学习算法估计模型参数。某光伏电站大量实测数据检验表明,在进行光伏功率波动特性研究方面,在不同时间尺度和天气类型下,变分贝叶斯学习算法比单一分布及基于最大期望算法的方法具有更好的拟合效果。
[Abstract]:The fluctuation of photovoltaic force seriously affects the stable operation of power system. Based on the analysis of the climbing rate of photovoltaic force, the Gao Si mixed model of the climbing rate of photovoltaic force is established, and the parameters of the model are estimated by using variational Bayesian learning algorithm. A large number of measured data of a photovoltaic power station show that, in the study of the fluctuation characteristics of photovoltaic power, under different time scales and weather types, The variational Bayesian learning algorithm has better fitting effect than the single distribution method and the method based on the maximum expectation algorithm.
【作者单位】: 上海电力学院电气工程学院;上海市电力公司检修公司;华中科技大学强电磁工程与新技术国家重点实验室;
【基金】:国家自然科学基金青年项目(51307105) 上海绿色能源并网工程技术研究中心(13DZ2251900) 上海市经济和信息委员会专项资金资助项目(沪CXY-2016-012)~~
【分类号】:TM615
[Abstract]:The fluctuation of photovoltaic force seriously affects the stable operation of power system. Based on the analysis of the climbing rate of photovoltaic force, the Gao Si mixed model of the climbing rate of photovoltaic force is established, and the parameters of the model are estimated by using variational Bayesian learning algorithm. A large number of measured data of a photovoltaic power station show that, in the study of the fluctuation characteristics of photovoltaic power, under different time scales and weather types, The variational Bayesian learning algorithm has better fitting effect than the single distribution method and the method based on the maximum expectation algorithm.
【作者单位】: 上海电力学院电气工程学院;上海市电力公司检修公司;华中科技大学强电磁工程与新技术国家重点实验室;
【基金】:国家自然科学基金青年项目(51307105) 上海绿色能源并网工程技术研究中心(13DZ2251900) 上海市经济和信息委员会专项资金资助项目(沪CXY-2016-012)~~
【分类号】:TM615
【参考文献】
相关期刊论文 前9条
1 杨茂;董骏城;;基于混合分布模型的风电功率波动特性研究[J];中国电机工程学报;2016年S1期
2 崔杨;杨海威;李鸿博;;基于高斯混合模型的风电场群功率波动概率密度分布函数研究[J];电网技术;2016年04期
3 卞海红;郑维高;林章岁;徐青山;张乐;;集群风电场出力统计指标建模与应用[J];电力自动化设备;2015年12期
4 陈逍潇;张粒子;杨萌;朱翊;;考虑光伏发电功率波动性的AGC备用容量分析方法[J];电力系统自动化;2015年22期
5 孙英云;侯建兰;何国庆;李红莉;;一种考虑备用影响的光伏发电碳减排量计算方法[J];电力系统自动化;2014年17期
6 吕晓禄;梁军;,
本文编号:2134132
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2134132.html