电气设备局部放电信号特征提取及分类方法研究
[Abstract]:Partial discharge is closely related to internal insulation material deterioration and insulator breakdown. The mechanism and location of partial discharge are different, and the damage degree of insulation is different. Therefore, accurate and rapid identification of partial discharge types is of great significance for electrical equipment maintenance personnel to determine the discharge location and arrange the maintenance plan reasonably. Based on the analysis of PD characteristics, this paper mainly studies the feature extraction and classification of PD signals in power equipment. The main work is as follows: a feature extraction method based on variational mode decomposition and multi-scale permutation entropy is proposed. The variational mode decomposition (VMD) algorithm is used to decompose the four PD signals collected under laboratory conditions, and several inherent modal components with limited bandwidth are obtained. The corresponding multi-scale permutation entropy is obtained and combined into the original characteristic quantity. At the same time, the maximum correlation minimum redundancy criterion is used to optimize and reduce the dimension of the original feature. Finally, support vector machine classifier is used to realize classification. The features extracted by this method can effectively represent the uncertainty and complexity of PD signals in different frequency bands, and have strong robustness and high recognition rate. The partial discharge pattern recognition algorithm (VPMCD). Based on variable prediction model is studied and established. The 37-dimensional statistical characteristic and 9-dimensional time-frequency characteristic are extracted from the discharge signal, and the partial discharge signal is classified by VPMCD. The experimental results show that the recognition rate and computational efficiency of VPMCD algorithm are higher than those of BP neural network and support vector machine. A modified VPMCD method is proposed to solve the problem that the performance of classifier is degraded due to the small number of effective partial discharge samples. In this method, the prediction model of eigenvalue is established by orthogonal complete basis function, and the precision of the model is improved by solving the model parameters by grid search strategy and moving least square method. The recognition accuracy of the improved VPMCD algorithm is higher than that of the VPMCDBP-BP neural network and the SVM algorithm with only a small number of PD samples.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM855
【参考文献】
相关期刊论文 前10条
1 陈攀;姚陈果;廖瑞金;陈昱;米彦;;分频段能量谱及马氏聚类算法在开关柜局部放电模式识别中的应用[J];高电压技术;2015年10期
2 黄亮;唐炬;凌超;张晓星;;基于多特征信息融合技术的局部放电模式识别研究[J];高电压技术;2015年03期
3 王余奎;李洪儒;叶鹏;;基于多尺度排列熵的液压泵故障识别[J];中国机械工程;2015年04期
4 唐炬;樊雷;张晓星;刘欣;;用谐波小波包变换法提取GIS局部放电信号多尺度特征参数[J];电工技术学报;2015年03期
5 汪可;廖瑞金;王季宇;杨丽君;李剑;;局部放电UHF脉冲的时频特征提取与聚类分析[J];电工技术学报;2015年02期
6 张晓星;舒娜;徐晓刚;李鑫;唐炬;;基于三维谱图混沌特征的GIS局部放电识别[J];电工技术学报;2015年01期
7 尚海昆;苑津莎;王瑜;张利伟;;多核多分类相关向量机在变压器局部放电模式识别中的应用[J];电工技术学报;2014年11期
8 任静波;孙根正;陈冰;罗明;;基于多尺度排列熵的铣削颤振在线监测方法[J];机械工程学报;2015年09期
9 尚海昆;苑津莎;王瑜;靳松;;基于交叉小波变换和相关系数矩阵的局部放电特征提取[J];电工技术学报;2014年04期
10 饶国强;冯辅周;司爱威;谢金良;;排列熵算法参数的优化确定方法研究[J];振动与冲击;2014年01期
相关博士学位论文 前3条
1 尹金良;基于相关向量机的油浸式电力变压器故障诊断方法研究[D];华北电力大学;2013年
2 李坚;代理模型近似技术研究及其在结构可靠度分析中的应用[D];上海交通大学;2013年
3 王聚丰;插值型移动最小二乘法及其无网格方法的误差估计[D];上海大学;2013年
,本文编号:2154331
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2154331.html