基于多新息的永磁同步电机参数辨识研究
[Abstract]:Permanent magnet synchronous motor (PMSM) has a simple structure, high efficiency, superior performance and good stability. Because of this, PMSM is widely used in wind power generation, robot, industrial production and other fields. The permanent magnet synchronous motor (PMSM) produces a fixed magnetic field by embedding a high performance permanent magnet into its inner rotor, which omits the excitation winding, reduces the reactive power of the motor, improves the power factor of the motor and increases the efficiency of the motor. At the same time, the simple structure makes the motor not easy to damage, improve the stability of the motor, and reduce the cost of later maintenance. It can not only increase the production capacity but also save energy by controlling the motor operation reasonably and giving full play to the performance of the motor. With the development of technology, a variety of control methods have been developed, but no matter which control method, the controller design can not be separated from accurate motor parameters. The methods of obtaining motor parameters can be divided into two types: offline parameter measurement and on-line parameter identification. The parameters obtained by off-line parameter measurement methods such as motor shutoff experiment and excitation response are all motor parameters in static state, which can not reflect the real motor parameters in the process of motor operation. In order to overcome this shortcoming, on-line parameter identification has some advantages, which is that the identification result can track the change of motor parameters, and then the controller parameters can be adjusted in real time with the change of motor parameters. The accuracy of the motor control method is improved, and the performance of the motor is improved. Many parameter identification algorithms have different advantages and disadvantages due to their different emphases. The convergence rate and precision can be used to express the performance of the algorithm. The advantage of multi-innovation algorithm is that it can increase the efficiency of data utilization by changing the size of innovation length and changing the amount of data needed for each calculation. In view of the fact that the performance of some algorithms is not satisfactory due to the low utilization of data in the process of identification, this paper improves the original algorithm to increase the efficiency of data utilization on the basis of preserving the original advantages of the algorithm. Firstly, the mathematical model and identification model of PMSM are introduced in this paper. On this basis, the vector control model of PMSM is built by using the very mature vector control method, and the parameters of the PMSM are collected when the PMSM is running. The motor parameters are identified by random gradient class, least one multiplication class and orthogonal projection class. The algorithm is optimized by multi-innovation algorithm and forgetting factor according to the advantages and disadvantages of the algorithm. The validity of the algorithm is verified by comparing the identification results.
【学位授予单位】:江南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM341
【参考文献】
相关期刊论文 前10条
1 吕小意;黄松;王艳;纪志成;;基于苍狼算法的感应电机改进模型参数辨识[J];系统仿真学报;2016年12期
2 张建宇;吴定会;;基于遗忘因子多新息随机梯度算法PMSM参数辨识[J];微特电机;2016年11期
3 荀倩;王培良;李祖欣;蔡志端;秦海鸿;;基于递推最小二乘法的永磁伺服系统参数辨识[J];电工技术学报;2016年17期
4 陈爱国;王士同;;基于多代表点的大规模数据模糊聚类算法[J];控制与决策;2016年12期
5 时振伟;纪志成;王艳;;多元系统耦合带遗忘因子有限数据窗递推最小二乘辨识方法[J];控制与决策;2016年10期
6 王飞宇;田井呈;卓克琼;赵朝会;;基于改进模型参考自适应算法的永磁同步电机转动惯量辨识[J];电机与控制应用;2016年08期
7 全亚威;田娜;纪志成;王艳;;基于珊瑚礁算法的永磁同步电机参数辨识[J];系统仿真学报;2016年04期
8 孔飞;吴定会;;一种改进的鸡群算法[J];江南大学学报(自然科学版);2015年06期
9 沈蛟骁;余海涛;王亚鲁;徐鸣飞;陈辉;;标准粒子群算法在永磁同步电机参数辨识中的应用研究[J];微电机;2015年12期
10 谢颖;李吉兴;杨忠学;张岩;;改进遗传蚁群算法及其在电机结构优化中的研究[J];电机与控制学报;2015年10期
相关博士学位论文 前2条
1 李冉;永磁同步电机无位置传感器运行控制技术研究[D];浙江大学;2012年
2 寇晓丽;群智能算法及其应用研究[D];西安电子科技大学;2009年
相关硕士学位论文 前3条
1 庞荣;深度神经网络算法研究及应用[D];西南交通大学;2016年
2 常凯;基于模型参考自适应的永磁同步电机无速度传感器控制系统的设计[D];东北大学;2009年
3 赵鹏军;优化问题的几种智能算法[D];西安电子科技大学;2009年
,本文编号:2159193
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2159193.html