风电机组轴承健康状态评估和劣化趋势预测方法的研究
[Abstract]:Because of the bad operating environment and the influence of many uncertain factors such as climate, wind turbine is prone to performance and condition deterioration. Once the key components fail, the overhaul time is longer, which increases the cost of operation and maintenance of wind farm. As a key component of wind turbine, the operation condition of bearing has an important influence on the reliability of the whole equipment. In this paper, based on the monitoring and data collection of wind turbine, the operation data of (Supervisory Control And Data requirement SCADA system is collected, and the research on the state of bearing is carried out from two aspects: health assessment model and deterioration trend prediction. Establish bearing health assessment model and trend prediction model. In this paper, bearing temperature of wind turbine unit is taken as research object, bearing temperature is affected by wind speed and power, working conditions are divided by Bin method, and healthy state sample set of each condition of bearing is selected by relative evaluation standard. Based on the least square fitting of health sample data, an evaluation model of bearing temperature health state is established. Based on this model, the concept of deterioration degree is introduced in combination with the upper and lower threshold of actual operation state. Considering the nonlinear problem of bearing deterioration trend of wind turbine, a prediction model of wind turbine bearing deterioration trend is established by using time series neural network. Taking the actual data of wind farm as an example, the model is verified and compared with other models. The instability of bearing deterioration trend of wind turbine is also existed when the model is used to evaluate the model, which will affect the prediction results. Before prediction, EEMD (Ensemble Empirical Mode Decomposition) method is used to decompose the deterioration trend with non-stationary property into a series of relatively stationary components, and the time series neural network is used to predict each component. The final prediction results are obtained by superposing the prediction results of all components. The research results show that the time series neural network prediction model has some advantages and the accuracy is improved for nonlinear data, and it can usually meet the needs of the monitoring parameters of wind turbine bearings. It has good practicability to discover the potential fault of the early generation unit. For the time series with strong nonlinearity and instability, the combined prediction model in this paper can more effectively track the trend of deterioration of the health state of fan bearings, and can obviously improve the accuracy of prediction.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM315
【参考文献】
相关期刊论文 前10条
1 胡姚刚;李辉;廖兴林;宋二兵;欧阳海黎;刘志祥;;风电轴承性能退化建模及其实时剩余寿命预测[J];中国电机工程学报;2016年06期
2 李辉;胡姚刚;李洋;杨东;欧阳海黎;兰涌森;唐显虎;;基于温度特征量的风电机组关键部件劣化渐变概率分析[J];电力自动化设备;2015年11期
3 王贺;胡志坚;张翌晖;李晨;杨楠;王战胜;;基于聚类经验模态分解和最小二乘支持向量机的短期风速组合预测[J];电工技术学报;2014年04期
4 董玉亮;李亚琼;曹海斌;何成兵;顾煜炯;;基于运行工况辨识的风电机组健康状态实时评价方法[J];中国电机工程学报;2013年11期
5 张小田;鄢盛腾;周雪青;赵洪山;;基于状态监测的风电机组主轴承早期故障预测方法[J];广东电力;2012年11期
6 李方溪;陈桂明;朱露;刘希亮;李胜朝;;基于经验模态分解与RBF神经网络的混合预测[J];振动.测试与诊断;2012年05期
7 周松林;茆美琴;苏建徽;;基于小波分析与支持向量机的风速预测[J];太阳能学报;2012年03期
8 苏连成;李兴林;李小俚;张燕辽;张仰平;;风电机组轴承的状态监测和故障诊断与运行维护[J];轴承;2012年01期
9 肖文斌;陈进;周宇;王志阳;赵发刚;;小波包变换和隐马尔可夫模型在轴承性能退化评估中的应用[J];振动与冲击;2011年08期
10 张玉;;基于振动幅域参数指标的滚动轴承故障诊断[J];机械制造与自动化;2011年03期
相关博士学位论文 前3条
1 徐东;球轴承疲劳剩余寿命分析与预测方法研究[D];国防科学技术大学;2011年
2 王衍学;机械故障监测诊断的若干新方法及其应用研究[D];西安交通大学;2009年
3 熊卫华;经验模态分解方法及其在变压器状态监测中的应用研究[D];浙江大学;2006年
相关硕士学位论文 前6条
1 李卉;基于状态监测的滚动轴承性能退化评估[D];大连工业大学;2015年
2 郑皓;基于多元时间序列的神经网络短期风速预测模型的研究[D];太原理工大学;2013年
3 李学伟;基于数据挖掘的风电机组状态预测及变桨系统异常识别[D];重庆大学;2012年
4 徐大维;基于时间序列模型的化工设备状态的预测研究[D];北京化工大学;2009年
5 雷金波;基于逻辑回归和支持向量机的设备状态退化评估与趋势预测研究[D];上海交通大学;2008年
6 刘颖峰;旋转机械状态监测系统的研究与开发[D];浙江大学;2003年
,本文编号:2167783
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2167783.html