当前位置:主页 > 科技论文 > 电气论文 >

公共楼宇大规模空调负荷虚拟调峰关键技术研究

发布时间:2018-08-07 15:20
【摘要】:随着经济的发展,国民经济水平的提高,夏季空调负荷成为很多城市电力负荷峰谷差不断增大的主要原因之一,加深了我国夏季高峰时段的电力供需矛盾。公共楼宇大规模空调负荷具备一定的调峰能力,因此挖掘公共楼宇大规模空调负荷的调峰潜力,并采用合理的调控手段削减高峰负荷,对减缓电网的压力具有很重要的意义。为解决公共楼宇大规模空调的虚拟调峰问题,本文主要进行了了如下研究:(1)分析了公共楼宇大规模空调负荷的预测技术。准确的公共楼宇大规模空调负荷预测对于掌握公共楼宇空调负荷可调度容量从而参与电网调控具有重要意义。提出了一种考虑夏季气温积温效应的基于Elman神经网络预测模型。将有效积温、温度、湿度、五日滑动平均温度作为气象因素考虑进Elman神经网络预测模型中,预测预测歳的公共楼宇大规模空调负荷值。(2)研究了公共楼宇大规模空调负荷参与电网虚拟调峰的调度方案的设计。公共楼宇大规模中央空调参与电网的调峰,需要充分考虑电网常规机组和公共楼宇的特点,所以立足于调度方案的设计,围绕框架建立、评估等方面开展研究。研究分析了公共楼宇大规模空调负荷参与的电网的日前、日内、实时的调度的调度技术框架,和有第三方负荷代理机构参与的公共楼宇大规模空调负荷参与调度架构,具体阐述了双层调度目标及约束条件,提出了公共楼宇大规模空调负荷参与调度效果在线评估指标及计算方法,可为公共楼宇大规模空调负荷参与调度优化协调系统提出参考,最后给出了公共楼宇大规模空调负荷参与调度方案的优化调整流程。(3)研究了公共楼大规模空调负荷虚拟调峰的策略。首先分析了公共楼宇大规模中央空调系统的物理模型构成以及主要功能,然后对中央空调进行物理建模,把中央空调的功率分为五大主要耗能部分,包含制冷机组耗能,冷冻水泵耗能,风机盘管耗能,冷却塔耗能和冷却水泵的耗能,并对五大耗能部分主要影响因素进行建模分析;然后针对中央空调的主要耗能部分的分析得到中央空调的可优化部分,分析了对公共楼宇大规模中央空调进行柔性调控的策略,包括全局的温度控制、增加冷冻机水温、风机盘管的关闭等,并分析得到了公共楼宇大规模参与柔性调控的流程。(4)建立了公共楼宇大规模空调负荷虚拟调峰组合优化算例。公共楼宇大规模空调组合参与电网日前调度,不同空调用户,根据自身的实际特征,可采取的调控策略不同。首先分析了公共楼宇大规模空调柔性调控组合方案,对中央空调典型用户的空调负荷特性进行曲线拟合,然后得到典型的中央空调参与的电网调控预设方案。实例分析了针对公共楼宇大规模中央空调参与电网日前调度的双层优化组合方案,采用的CPLEX优化软件包进行组合优化,得到早高峰、腰高峰和晚高峰的调控组合方案。
[Abstract]:With the development of economy and the improvement of national economy, air conditioning load in summer becomes one of the main reasons for the increasing peak and valley difference of power load in many cities, which deepens the contradiction between power supply and demand during the peak period of summer in China. The large-scale air conditioning load of public buildings has certain peak-shaving ability, so it is of great significance to excavate the peak-shaving potential of large-scale air-conditioner load of public buildings and to reduce the peak load by adopting reasonable control measures, which is of great significance to reduce the pressure of power grid. In order to solve the problem of virtual peak-shaving of large-scale air conditioning in public buildings, this paper has mainly carried out the following research: (1) the forecasting technology of large-scale air conditioning load in public buildings is analyzed. Accurate prediction of large-scale air conditioning load in public buildings is of great significance for grasping the dispatching capacity of air conditioning load in public buildings and participating in the regulation and control of power grid. This paper presents a prediction model based on Elman neural network considering the effect of accumulated temperature in summer. The effective accumulated temperature, humidity and five-day moving average temperature are taken into account as meteorological factors in the prediction model of Elman neural network. The large scale air conditioning load of public buildings is forecasted. (2) the design of dispatching scheme for large-scale air conditioning load of public buildings to participate in the virtual peak-shaving of power grid is studied. The large scale central air conditioning of public buildings takes part in the peak-shaving of power grid, which needs to fully consider the characteristics of conventional units and public buildings. Therefore, based on the design of dispatching scheme, the research is carried out around the establishment of framework, evaluation and so on. This paper studies and analyzes the pre-day, in-day, real-time scheduling technical framework of large-scale air-conditioning load in public buildings, and the large-scale air-conditioning load scheduling framework of public buildings with third-party load agents. In this paper, the double layer dispatching target and constraint condition are expounded, and the online evaluation index and calculation method of large-scale air conditioning load participating in dispatching of public buildings are put forward, which can be used as a reference for the optimization and coordination system of large-scale air conditioning load participation in public buildings. Finally, the optimization and adjustment process of large-scale air conditioning load in public buildings is given. (3) the strategy of virtual peak-shaving for large-scale air conditioning load in public buildings is studied. Firstly, the physical model and main functions of large-scale central air conditioning system in public buildings are analyzed, and then the physical model of central air conditioning system is built. The power of central air conditioning system is divided into five main energy consumption parts, including the energy consumption of refrigeration units. Cooling pump energy consumption, fan coil energy consumption, cooling tower energy consumption and cooling pump energy consumption. Then, according to the analysis of the main energy consumption part of the central air conditioning system, the optimizable part of the central air conditioning system is obtained. The flexible control strategy for large-scale central air conditioning in public buildings is analyzed, including the overall temperature control, increasing the water temperature of the freezer. The process of large-scale participation in flexible control of public buildings is obtained. (4) A virtual peak-shaving optimization example of large-scale air conditioning load in public buildings is established. Large scale air conditioning combinations of public buildings participate in daily dispatching of power grid. According to their actual characteristics, different air conditioning users can adopt different control strategies. Firstly, the large-scale flexible control scheme of public buildings is analyzed, and the curve fitting of the load characteristics of typical central air conditioning users is carried out, and then the presupposition scheme of power grid regulation and control in which typical central air conditioners participate is obtained. An example is given to analyze the bilevel optimal combination scheme for large-scale central air conditioning in public buildings to participate in the daily dispatching of power network. The CPLEX optimization software package is used to optimize the combination of the early peak, middle peak and late peak to obtain the control combination of early peak, low peak and late peak.
【学位授予单位】:东南大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TM73

【相似文献】

相关期刊论文 前10条

1 郑就;;中央空调负荷采用计算机软件的计算与分析[J];制冷与空调(四川);2008年04期

2 刘馨宜;;空调负荷控制策略分析[J];科技资讯;2009年35期

3 卢丽;宗通;王国磊;;建筑遮挡对空调负荷影响的分析与探讨[J];中国住宅设施;2011年02期

4 李斌;林弘宇;徐石明;颜庆国;肖文举;张磊;杨永标;;智能电网框架下公共楼宇空调负荷资源化应用[J];供用电;2014年03期

5 李英娜,顾平道,庄琛;大中型商场空调负荷影响因素的探讨[J];应用能源技术;2004年02期

6 温权,李敬如,赵静;空调负荷计算方法及应用[J];电力需求侧管理;2005年04期

7 李东梅;李敬如;赵静;温权;;北京空调负荷结构及调控措施研究[J];电力技术经济;2005年06期

8 李民;朱慰慈;;2005年夏季镇江地区空调负荷特点分析[J];江苏电机工程;2006年02期

9 杨洁;张旭;王凌飞;;上海世博会展馆建筑空调负荷指标的影响因素分析[J];暖通空调;2006年09期

10 陶勇;沈颖;;夏季气象条件对地区空调负荷的影响[J];华东电力;2006年10期

相关会议论文 前10条

1 张春路;李灏;丁国良;陈芝久;;空调负荷新型计算方法研究[A];上海市制冷学会一九九七年学术年会论文集[C];1997年

2 林真国;付祥钊;张素云;;论由照明引起的空调负荷计算[A];全国暖通空调制冷2000年学术年会论文集[C];2000年

3 蒋骞;龙惟定;;双层立面建筑的空调负荷计算[A];第13届全国暖通空调技术信息网技术交流大会文集[C];2005年

4 龙洋波;吴祥生;孙秀平;;几种常见空调负荷动态计算方法介绍[A];2005西南地区暖通空调热能动力年会论文集[C];2005年

5 何大四;张旭;;改进的季节性指数平滑法预测空调负荷实例研究[A];全国暖通空调制冷2004年学术年会资料摘要集(2)[C];2004年

6 周娟;陈友明;胡敏;;空调负荷计算新方法的应用研究[A];全国暖通空调制冷2004年学术年会资料摘要集(2)[C];2004年

7 高立新;陆亚俊;;智能化空调负荷计算软件的开发[A];全国暖通空调制冷2004年学术年会资料摘要集(2)[C];2004年

8 张春路;李灏;丁国良;陈芝久;;空调负荷新型计算方法研究[A];全国暖通空调制冷1998年学术年会论文集(2)[C];1998年

9 何大四;张旭;;改进的季节性指数平滑法预测空调负荷的实例研究[A];上海市制冷学会二○○三年学术年会论文集[C];2003年

10 王春丽;李晓冬;;分层空调负荷与温度场动态多区热质平衡模型探讨[A];全国暖通空调制冷2004年学术年会资料摘要集(2)[C];2004年

相关重要报纸文章 前2条

1 蓝旺;给空调负荷“降温”[N];中国电力报;2004年

2 ;空调负荷来势凶猛 电网企业应对有力[N];国家电网报;2012年



本文编号:2170450

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2170450.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c0a00***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com