含大规模风电的互联电网频率控制策略研究
[Abstract]:With the development of social modernization, energy crisis and environmental pollution bring more challenges to the sustainable development of society. Therefore, the development and utilization of new energy is highly valued by all countries in the world. Wind power plays an important role in the field of renewable energy because of its abundant resources, large-scale development and relatively short construction period. However, the increase of wind power grid capacity brings new problems and challenges to the frequency stability control of power system, which affects the safe and stable operation of the system. The study of frequency control strategy for interconnected power system with large scale wind power has become an important research topic in frequency stability control of power system. Therefore, focusing on the frequency control problem of interconnected power grid with wind power, the paper studies the active participation of wind turbine in frequency modulation system and the improvement of load frequency control in interconnected power grid. The main work of this paper is as follows: (1) aiming at the inherent shortcoming of speed recovery of doubly-fed wind turbine after releasing rotor kinetic energy in traditional rotor kinetic energy control, an improved frequency control scheme for doubly-fed wind turbine based on rotor kinetic energy control is designed. The proposed improved scheme can realize the active control of rotor speed recovery start-up time. By controlling the frequency drop process caused by speed recovery, the frequency recovery will occur after the stability of the rotor speed is restored. To overcome the adverse effect on frequency control caused by releasing rotor kinetic energy and entering the speed recovery process immediately. Simulation results show that the proposed method can effectively improve the effect of active participation of doubly-fed wind turbines in system frequency modulation. (2) in order to improve the design of integer order PID load frequency controller for wind power access, A load frequency controller based on fractional-order PID is designed for interconnected wind power network. Particle swarm optimization (PSO) algorithm is used to optimize the parameters of the controller. The simulation results show that the controller has good dynamic performance and anti-interference ability. Compared with integer order PID load frequency controller, fractional order PID load frequency controller can better deal with the nonlinearity and uncertainty in load frequency control. Fractional PID load frequency controller can effectively reduce the adverse effect of wind power output uncertainty on frequency control of interconnected power grid. It provides a new solution for load frequency control of interconnected power grid with wind power. (3) in order to improve the anti-parameter perturbation ability of load frequency controller, a load frequency controller based on sliding mode control is designed. The simulation results show that the load frequency controller based on sliding mode control has better control performance than the integer order PID load frequency controller, and can better solve the load frequency control problem of interconnected power grid with wind power. Compared with fractional PID load frequency controller, the load frequency controller based on sliding mode control has better resistance to parameter perturbation. The theoretical research and simulation results show that the frequency control strategy of interconnected power grid with wind power is reasonable and effective from the aspects of active participation of wind turbine in system frequency modulation and improvement of load frequency control method. It is beneficial to improve the frequency stability control ability of the wind power interconnected power network, and can provide a strong guarantee for the safe and stable operation of the wind power interconnected power network.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM614;TM712
【相似文献】
相关期刊论文 前10条
1 孔莲芳;罗天祥;吴捷;;基于状态收缩约束的模型预测负荷频率控制[J];中国电机工程学报;2007年07期
2 张建武;刘向杰;黄宏清;;电力市场环境下的新型负荷频率控制方法[J];电网技术;2008年12期
3 刘向杰;闫东梅;展晓磊;;微粒群优化负荷频率控制[J];电力系统及其自动化学报;2010年03期
4 秦翼鸿;;负荷频率控制器最佳参数选择的研究[J];重庆大学学报;1985年04期
5 卫万采;;采用积分补偿和状态反馈的负荷频率控制方式[J];电力技术;1988年02期
6 朱继忠,徐国禹;多区域电力系统负荷频率控制的解耦计算[J];重庆大学学报(自然科学版);1990年05期
7 高峰,秦翼鸿,,徐国禹;分散模糊负荷频率控制器的优化设计[J];电网技术;1996年03期
8 谭文;周宏;傅彩芬;;负荷频率控制系统的线性自抗扰控制[J];控制理论与应用;2013年12期
9 王玉龙;谭文;;多区域电网负荷频率控制的鲁棒设计[J];计算机仿真;2014年02期
10 米阳;吴晓;楚瀛;李正辉;;基于滑模控制的单域电力系统负荷频率控制[J];控制与决策;2012年12期
相关会议论文 前3条
1 王玉龙;谭文;;基于动态矩阵控制的负荷频率控制[A];第25届中国控制与决策会议论文集[C];2013年
2 谭文;张继芬;;风机-柴油机混合系统的负荷频率控制[A];中国自动化学会控制理论专业委员会C卷[C];2011年
3 杨少军;侯博渊;;互联系统分散的变结构负荷频率控制[A];1989年控制理论及其应用年会论文集(中)[C];1989年
相关博士学位论文 前1条
1 张传科;时滞电力系统的小扰动稳定分析与负荷频率控制[D];中南大学;2013年
相关硕士学位论文 前10条
1 李慧;基于微分对策的互联电网负荷频率控制[D];西南交通大学;2015年
2 陈雯;含双馈风机电力系统的负荷频率控制[D];华北电力大学;2015年
3 唐艳梅;线性自抗扰控制器在孤岛微网负荷频率控制中的应用[D];华北电力大学;2015年
4 王辉;双馈风机的建模及其负荷频率控制[D];华北电力大学(北京);2016年
5 言语佳;风电介入下的电力系统负荷频率控制[D];华北电力大学(北京);2016年
6 刘彬彬;含大规模风电的互联电网频率控制策略研究[D];西南交通大学;2017年
7 张红侠;时滞及市场化电力系统的负荷频率控制[D];华北电力大学(北京);2011年
8 付娅;含大规模风电的互联系统的负荷频率控制[D];北京交通大学;2012年
9 王玉龙;负荷频率控制系统的设计及优化[D];华北电力大学;2014年
10 张斌;基于云模型理论的互联电力系统负荷频率控制策略研究[D];东北电力大学;2015年
本文编号:2179418
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2179418.html