基于集合卡尔曼滤波的电能质量检测
[Abstract]:In the process of continuous progress of modern science and technology, electric energy plays an irreplaceable role in all aspects of human activities, at the same time, this double-edged sword also brings a lot of harm and trouble to mankind. In the course of human activities, once the electronic devices are manipulated excessively, the electronic network system will be in a state of collapse and disintegration, which will also cause a serious passive waste of electricity to groups or individuals. It can be seen that if we can realize the goal of real-time monitoring circuit and measuring related indicators, it will bring a lot of benefits, and this goal will also become the primary research project of scholars now. Because the key to achieve this goal is to pay attention to the related signals, leading to a lot of hot modern signal related professional approaches to combine with the above goals, has been smooth to the good environment. The first way to improve power quality is to obtain and reduce the presence of noise in power quality, so that the obtained results are always more authentic. This article will be discussed in detail in this respect. As a first step, the article will introduce the existing ways of obtaining results in detail. Officially because of the existence of these existing channels can allow us to obtain relatively real and perfect power quality parameters. In the second step, this paper will show a theory of data processing and data analysis, that is, the power quality acquisition method based on set Kalman filter. At the same time, this theory has been applied to the field of human activities on all sides. It is precisely because of the rapid processing of the operation steps of this theory, it can detect the advantages of individual parameters and so on. In the process of detection and acquisition, the noise changes greatly and there is no rule to follow, which makes it more difficult for us to reduce the noise. In the third step, this article will develop an innovative concept of the background set of the above signal processing pathways, so that this method can be used better in the collection of data. The concrete step is to require us to first have a set of background at a time. Then through a series of operations, the results can be truly restored. Using the physical observation operation, we can detect the change of noise, and then describe the beginning, end and maximum change of noise. Finally, we can discuss and restore the real power quality by means of reducing noise and so on. First of all, a specific working system was used to test and evaluate the above processing routes. It was found that the above approaches can accomplish better work, that is, they can provide us with more complete noise dynamics, that is, in tracing the origin. Research progress and quantitative measurement have had good results. At the end of the paper, there is something innovative about LabVIEW.LabVIEW. After testing the project, we can see that the working performance is in good condition.
【学位授予单位】:湖北工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM711;TM930
【参考文献】
相关期刊论文 前10条
1 李功新;周文俊;薛尚青;江修波;;动态电压恢复器的无迹卡尔曼滤波检测方法[J];电力系统保护与控制;2013年16期
2 李冬明;高玺亮;王文龙;肖洋;;基于LabVIEW和Matlab综合平台的电能质量监测系统研究[J];电测与仪表;2012年03期
3 王静;;电压有效值测量[J];西安邮电学院学报;2011年S1期
4 杜航原;郝燕玲;赵玉新;;基于集合卡尔曼滤波的改进粒子滤波算法[J];系统工程与电子技术;2011年07期
5 鲁波涌;黄文清;;结合小波变换和能量算子的电压暂降检测方法[J];电工技术学报;2011年05期
6 吴国灿;郑小谷;李勇;;非线性观测算子的集合卡尔曼滤波的改进[J];北京师范大学学报(自然科学版);2010年06期
7 王效孟;周勇;刘继承;林烽;;检测电压暂降特征量的有效值算法[J];低压电器;2010年10期
8 崔利娜;林晓梅;黄艳秋;;S3C2410在电能质量监测分析仪中的应用研究[J];电测与仪表;2010年02期
9 秦英林;田立军;;短时电压扰动检测与定位新方法[J];电力系统保护与控制;2010年04期
10 周龙华;付青;余世杰;李湘峰;;基于小波变换的谐波检测技术[J];电力系统及其自动化学报;2010年01期
相关硕士学位论文 前10条
1 周辉;动态海洋环境下声速剖面的反演方法研究[D];浙江大学;2013年
2 惠雪峰;基于集合卡尔曼滤波的森林资源动态预测[D];南京林业大学;2012年
3 宋敏;基于DSP和嵌入式平台的在线电能质量监测系统设计[D];上海交通大学;2012年
4 于子寇;基于 LabVIEW 的风电场电能质量网络监测系统[D];燕山大学;2012年
5 王瑜;基于DSP的电能质量检测仪的研制[D];西南交通大学;2011年
6 曾滔;基于TMS320F2812的电能质量检测系统设计[D];厦门大学;2009年
7 乔小n\;双分辨率集合卡尔曼滤波方法的研究[D];兰州大学;2009年
8 张希;基于LabVIEW的电能质量监测系统[D];西安科技大学;2009年
9 刘涛;基于虚拟仪器技术的电能质量在线检测技术研究[D];南京理工大学;2008年
10 余希木;基于Kalman滤波的动态电能质量监测[D];四川大学;2006年
,本文编号:2195823
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2195823.html