双机械端口磁通切换永磁无刷电机及其多模式驱动控制研究
[Abstract]:In recent years, with the continuous concern about energy, environment and other important issues, new energy vehicles such as electric vehicles, hybrid electric vehicles and other new energy vehicles with the design concept of "high electrification and high energy efficiency" have developed rapidly in the world. At the same time, in order to meet the needs of modern complex and comprehensive working conditions, NEW energy vehicles are used for vehicles. Driving motors and their control systems have put forward stringent new requirements such as high transmission efficiency, multi-drive operation modes and small and lightweight. Dual-mechanical-port permanent magnet motor, as a new type of motor with dual-power input or output ports, not only has high power/torque density, high efficiency and wide speed range, but also has many advantages. With the advantages of energy, compact motor structure, flexible power transfer and distribution, and rich driving mode, it has attracted the attention of many scholars at home and abroad in the field of motor. Now it has become one of the hotspots in the research of power drive of modern hybrid electric vehicles. A dual-mechanical-port flux-switching Permanent Magnet brushless (DMP-FSPMBL) motor is proposed, which is integrated with dual-mechanical-port motor. The theoretical analysis and experimental research of the motor are carried out systematically. The main contents are as follows: 1. High power density, The design concept of high-efficiency stator permanent magnet type FSPM motor is integrated into the dual-mechanical-port motor, and a novel structure DMP-FSPMBL motor is proposed. On the basis of explaining the basic structure characteristics and operation principle of the motor, the power dimension equation of the internal and external motor is established. The pole-slot ratio of the internal and external motor, the topological structure of the permanent magnet, the number of winding turns, and the rated phase current of the motor are given. In addition, the magnetic coupling characteristics between internal and external motors are qualitatively analyzed by magnetic circuit method, and the design method of stator magnetic barrier is adopted to reduce the magnetic coupling between internal and external motors. 2. The design idea of optimal power distribution between internal and external motors is introduced into the design of DMP-FSPMBL motors to design the motor system. Magnetic load and electric load are considered as comprehensive constraints, and the optimal split ratio of the internal and external motor is explored and proposed under the constraints of structure size and total power of the motor. The response surface method and the multi-objective genetic algorithm are used to optimize the different sensitive layers, and the comprehensive tradeoff and performance optimization among the design objectives of "output torque", "torque ripple" and "internal and external motor magnetic coupling degree" are achieved. In order to solve the problem of fast and efficient design of permanent magnet motors with complex structures, an effective design method is provided. 4. Electromagnetic properties of DMP-FSPMBL motors, such as back EMF, positioning torque, inductance, torque, torque ripple and magnetic coupling characteristics, are evaluated and analyzed in detail by finite element method. The rationality of the motor structure and the effectiveness of the multi-objective optimization design method are preliminarily verified. In addition, the operating efficiency MAP of the internal and external motors and the MAP characteristics of different operating current angles are studied. It is revealed that the DMP-FSPMBL motor has the potential ability to operate efficiently and reliably in a wide speed range. 5. The DMP-FSPMBL is electrified. The brushless electromagnetic hybrid power system with compact structure and high power integration is constructed by combining the engine with the non-contact permanent magnet planetary gear magnetic transmission components. The mathematical model of the hybrid power system is established, and the various driving modes of the hybrid power system under complex operating conditions are preliminarily analyzed. 6. The vehicle simulation model based on DMP-FSPMBL motor hybrid system is established, and the driving control strategy of "pure electric priority" is studied. The basic performance of the system under multi-mode drive is studied, and the motor and vehicle under NEDC are analyzed. The prototype DMP-FSPMBL is manufactured and the simulation experiment platform of hybrid power system is built. The basic performance of the motor and the variable-speed variable-load characteristic of hybrid power system under various driving modes are tested and evaluated comprehensively. The validity and correctness of the DMP-FSPMBL motor and the corresponding hybrid system are verified. The hybrid system based on DMP-FSPMBL motor has the ability of multi-mode drive operation, which provides theoretical support and experimental basis for its potential application in hybrid electric vehicle.
【学位授予单位】:江苏大学
【学位级别】:博士
【学位授予年份】:2017
【分类号】:TM351
【相似文献】
相关期刊论文 前10条
1 陈厚松;电动自行车用印制电机与无刷电机性能的比较[J];微电机(伺服技术);2001年01期
2 胡终须,,何鸿肃;永磁无刷电机力矩分析[J];广东机械学院学报;1994年03期
3 刘志龙,谢宋和,李淑君;基于TMS320L240x DSP的无刷电机控制器的设计[J];郑州轻工业学院学报;2003年02期
4 Gianluca Pedrina;用于无刷电机旋转测量的无传感器型控制[J];电子设计应用;2005年09期
5 张汉屏;;一种性能优良的无刷电机驱动芯片的应用[J];电子制作;2011年03期
6 杨华;;基于直流的无刷电机控制系统的设计[J];硅谷;2011年06期
7 朱则刚;;探索永磁无刷电机及其应用[J];电器工业;2013年06期
8 唐雷;;一款节能风扇用无刷电机的设计[J];湖南农机;2013年09期
9 ;伺服结构和应用技术(6)──无刷电机的控制和应用[J];微特电机;1998年02期
10 谢晨;杜坚;韩屹松;姜莹莹;陈酉江;韩燕;;基于四轴飞行器的无刷电机驱动设计[J];自动化与仪器仪表;2013年05期
相关会议论文 前10条
1 李新华;胡海;邴黎明;杨卫华;;新型无刷电机吊扇及控制器研究[A];第十三届中国小电机技术研讨会论文集[C];2008年
2 李新华;杨卫华;邴黎明;刘声华;;电动遮阳篷无刷电机驱动系统研究[A];第十二届中国小电机技术研讨会论文集[C];2007年
3 李新华;邴黎明;杨卫华;刘声华;;电动遮阳篷无刷电机驱动的计算机控制[A];第十二届中国小电机技术研讨会论文集[C];2007年
4 李新华;吴迪;;电感法无刷电机控制器的实验研究[A];湖北省电工技术学会、武汉电工技术学会2008年学术年会暨理事会换届大会论文集[C];2008年
5 李节宝;章跃进;王佳;;永磁无刷电机转矩脉动削弱方法综述[A];第十五届中国小电机技术研讨会论文摘要集[C];2010年
6 黄苏融;;永磁无刷电机无位置传感器控制研究[A];第十一届中国小电机技术研讨会论文集[C];2006年
7 袁海林;;永磁无刷电机是微特电机发展主流[A];第十届中国小电机技术研讨会论文集[C];2005年
8 杨萍;张洪钺;;基于双观测器的无刷电机闭环系统故障诊断[A];第16届中国过程控制学术年会暨第4届全国故障诊断与安全性学术会议论文集[C];2005年
9 程鑫;廖传书;;基于CAN的车用无刷电机控制节点设计[A];中国汽车工程学会汽车电子技术分会第七届(2006)年会暨学术研讨会论文集[C];2006年
10 佟国香;周亦敏;温田学;吉田修;浦野启;铃木英次;;基于μpd78F9222的无刷电机控制系统的实现[A];第七届青年学术会议论文集[C];2005年
相关重要报纸文章 前10条
1 武汉 王绍华;电动自行车无刷电机工作原理[N];电子报;2013年
2 朱敬民;市兴耀华模型有限公司开工建设[N];咸宁日报;2008年
3 ;简介电动自行车电机的接线方法[N];电子报;2010年
4 尚静 记者 衣春翔;哈工大永磁无刷电机让“玉兔”行走更平稳[N];黑龙江日报;2013年
5 江照军 徐爱新;古稀老夫妇高新区创业[N];中国高新技术产业导报;2004年
6 四川 伍九林;无刷电瓶车单片机控制器原理与检修[N];电子报;2007年
7 记者 宫广军;通用与戴-克联手开发新混合动力系统[N];国际金融报;2004年
8 本报记者 张宇星;积极推动混合动力系统本地化[N];国际商报;2012年
9 张蔚;三强联合共同发布新技术[N];中国质量报;2006年
10 莫报;玉柴混合动力系统亮相东盟博览会[N];中国工业报;2007年
相关博士学位论文 前10条
1 项子旋;双机械端口磁通切换永磁无刷电机及其多模式驱动控制研究[D];江苏大学;2017年
2 李琛;磁通解耦型磁力变速永磁无刷电机基础理论与设计研究[D];上海大学;2015年
3 刘慧娟;径向叠片磁障式转子双馈无刷电机的研究[D];北京交通大学;2010年
4 郝鹤;高速永磁无刷电机多场综合分析及无位置传感器控制[D];浙江大学;2013年
5 王雅玲;电动汽车用双定子永磁无刷电机研究[D];山东大学;2014年
6 王喜明;插电式混合动力城市客车动力系统匹配与控制优化研究[D];北京理工大学;2015年
7 朱福堂;单电机多模式混合动力系统的架构设计分析与模式切换研究[D];上海交通大学;2014年
8 莫丽红;混合动力系统用永磁磁通切换双转子电机基础理论研究[D];江苏大学;2015年
9 谢长君;基于多模型控制的燃料电池汽车混合动力系统优化研究[D];武汉理工大学;2009年
10 王加雪;双电机混合动力系统参数匹配与协调控制研究[D];吉林大学;2011年
相关硕士学位论文 前10条
1 张学芹;转子无铁心高速永磁无刷直流电动机的设计研究[D];山东大学;2015年
2 肖东亮;基于模糊逻辑的测井永磁无刷直流电机驱动系统研究[D];哈尔滨工业大学;2015年
3 朱峰;车用宽调速磁场增强型永磁无刷电机控制策略的研究[D];江苏大学;2016年
4 顾玮玮;电动汽车用少稀土组合励磁永磁无刷电机的设计与分析[D];江苏大学;2016年
5 付佳斌;电动汽车的永磁无刷电机控制技术研究[D];合肥工业大学;2016年
6 寇水潮;四旋翼飞行器在电厂典型环境监测中的应用研究[D];西安科技大学;2016年
7 杨雅薇;无刷电机控制系统中的若干问题研究[D];浙江大学;2017年
8 吴巧变;基于软磁复合材料的盘式横向磁通永磁无刷电机研究[D];山东大学;2017年
9 张家思;山地车永磁无刷电机振动与噪声研究[D];湖北工业大学;2017年
10 杨深;磁场增强型永磁无刷电机的设计与分析[D];江苏大学;2017年
本文编号:2210179
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2210179.html