基于大数据的用户用电特性研究
[Abstract]:In recent years, the construction of smart grid has developed rapidly. At the same time, a set of perfect power user information collection system has been built, which will provide massive raw data for data analysis. Because China has a large number of power systems, the order of data will reach PB level or even TB level, the traditional technology is difficult to deal with this level of data, need to use the emerging big data technology to carry out related analysis. In today's society data is the most important wealth, there is a variety of information hidden in the data, through the analysis of these data can get more valuable information, so that these data play a greater role. Based on the analysis of the relevant data of the user's electricity consumption, this paper obtains the relevant characteristics of the user's electricity consumption, and forecasts the load of the user's future power consumption data. Firstly, the related concepts of data mining are introduced, which provides a method for data preprocessing. In the face of massive user data, this paper introduces the common big data processing framework Hadoop and Spark, at the same time set up a related cluster, which provides a data analysis platform for big data processing. Then, the clustering technology of data mining is applied to big data analysis platform to cluster the daily load of users, get the daily load curve of users and study the load curve. Because the user's sample dimension is high and the effect of the traditional clustering method is not ideal, this paper improves on the spectral clustering to obtain the power iteration clustering. The power iteration clustering is applied to the data analysis and implemented on the Spark platform. Finally, the power consumption characteristics of the relevant users can be well obtained. Finally, load forecasting is implemented by combining local weighting algorithm with Hadoop platform, and compared with real load, the validity and application of this method in power big data are verified.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP311.13;TM715
【参考文献】
相关期刊论文 前10条
1 赵军;徐晓燕;;基于GraphX的分布式幂迭代聚类[J];计算机应用;2016年10期
2 刘思;李林芝;吴浩;孙维真;傅旭华;叶承晋;黄民翔;;基于特性指标降维的日负荷曲线聚类分析[J];电网技术;2016年03期
3 孙艺新;;电力大数据应用模式与前景分析[J];中国电力企业管理;2015年17期
4 王继业;;大数据在电网企业的应用探索[J];中国电力企业管理;2015年17期
5 陈华军;;大数据变革——南方电网大数据应用探索[J];中国电力企业管理;2015年17期
6 黎文阳;;大数据处理模型Apache Spark研究[J];现代计算机(专业版);2015年08期
7 张素香;赵丙镇;王风雨;张东;;海量数据下的电力负荷短期预测[J];中国电机工程学报;2015年01期
8 张沛;;电力大数据应用现状及前景[J];电气时代;2014年12期
9 刘莉;王刚;翟登辉;;k-means聚类算法在负荷曲线分类中的应用[J];电力系统保护与控制;2011年23期
10 李天云;李想;刘辉军;王洪涛;;基于谱聚类的电力负荷分类[J];吉林电力;2008年05期
相关硕士学位论文 前9条
1 陈晓康;基于Spark 云计算平台的改进K近邻算法研究[D];广东工业大学;2016年
2 陈琦;基于Hadoop的电力大数据特征分析研究[D];华北电力大学(北京);2016年
3 孙兵率;基于MapReduce的数据挖掘算法并行化研究与应用[D];西安工程大学;2015年
4 杜明建;大数据技术在负荷预测与负荷特性分析中的应用[D];东南大学;2015年
5 袁超;短期电力负荷混合预测模型研究[D];兰州大学;2015年
6 李雄;面向大数据的聚类挖掘算法研究[D];南京邮电大学;2014年
7 赵硕;云计算和机器学习算法在电力负荷预测中的研究与应用[D];华北电力大学;2014年
8 虞乐;基于Hadoop平台下回归算法的性能研究[D];南华大学;2012年
9 李军华;云计算及若干数据挖掘算法的MapReduce化研究[D];电子科技大学;2010年
,本文编号:2248737
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2248737.html