基于改进集成学习算法的风机齿轮箱故障诊断与状态监测研究
[Abstract]:With the rapid development of global new energy technology and the increasing proportion of wind power, the importance and urgency of fan fault diagnosis and condition monitoring are becoming more and more obvious. In order to improve the reliability of fan gearbox, this paper focuses on the fault diagnosis and condition monitoring method of fan gearbox, and respectively studies the fan gearbox gear, bearing and oil temperature. Based on the combination of integrated learning, artificial bee colony algorithm and improved artificial bee colony algorithm, the fault diagnosis and condition monitoring of fan gearbox are studied in this paper. Combined with the research method, the software and hardware design of fan fault diagnosis and condition monitoring system is carried out, mainly in the following four aspects. (1) the mechanism of fan gearbox fault formation is studied, and the gears collected on the experimental platform are used. The vibration signal of bearing is firstly de-noised by wavelet packet transform, then the time domain eigenvalue is extracted from the signal after denoising, then the frequency domain signal is obtained by fast Fourier transform of the time domain signal, and then the frequency domain characteristic value is extracted. Finally, the time-domain and frequency-domain eigenvalues are normalized to provide a good basis for fault diagnosis in the following chapters. (2) the pitting corrosion of the gears in the fan gearbox, gear tooth breaking, bearing inner ring damage and bearing outer ring damage are diagnosed. A fault diagnosis method of selective neural network ensemble algorithm (ABCSEN) based on artificial bee colony algorithm is proposed. Firstly, the UCI data set is used to verify that the ABCSEN presented in this paper is superior to GASEN and Bagging, in accuracy and efficiency. Then the ABCSEN is trained with the historical fault data of the gearbox to obtain the fault diagnosis model. Finally, the new fault diagnosis model is tested with the new fault data. The results show that the model has good diagnostic effect. (3) based on the oil temperature data of fan gear box, the method of monitoring the condition of gear box is studied. The improved ABCSEN, (selective neural network ensemble algorithm (MCABCSEN), based on dynamic Cauchy swarm algorithm) is proposed firstly. Then the superiority of the improved algorithm is verified by using the test function. Finally, the new algorithm is trained and tested by using the oil temperature data of the gear box of a certain wind field in the south and the fault oil temperature data of the gear box fitted artificially. The results show that the new algorithm is sensitive to state monitoring. It can warn the fault in advance and warn the staff in time to prevent the loss from increasing further. (4) based on the method of fault diagnosis and condition monitoring, a fault diagnosis and condition monitoring system for fan gearbox is built. The design of system hardware and software is explained in detail, and the design scheme is verified by experiments.
【学位授予单位】:上海电机学院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM315
【参考文献】
相关期刊论文 前10条
1 ;2015年中国风电装机容量统计[J];风能;2016年02期
2 ;2015年全球风电装机统计[J];风能;2016年02期
3 谢全民;曲广建;钟明寿;朱振海;曹宏安;高英;;提升小波包变换技术在工程爆破远程测振系统中的应用研究[J];爆破;2015年03期
4 王桐;曲桂雪;;基于柯西分布量子粒子群的混合推荐算法[J];中南大学学报(自然科学版);2015年08期
5 吴光文;王昌明;包建东;陈勇;胡扬坡;;基于自适应阈值函数的小波阈值去噪方法[J];电子与信息学报;2014年06期
6 马宏忠;时维俊;韩敬东;陈继宁;陈涛涛;;计及转子变换器控制策略的双馈风力发电机转子绕组故障诊断[J];中国电机工程学报;2013年18期
7 阳同光;蒋新华;付强;;混合蛙跳脊波神经网络观测器电机故障诊断研究[J];仪器仪表学报;2013年01期
8 赵洪山;胡庆春;李志为;;基于统计过程控制的风机齿轮箱故障预测[J];电力系统保护与控制;2012年13期
9 易正俊;何荣花;侯坤;;量子位Bloch坐标的量子人工蜂群优化算法[J];计算机应用;2012年07期
10 苗锐;陈国初;李月;徐余法;俞金寿;;基于随机集含糊证据的风力发电机故障诊断方法[J];电力系统自动化;2012年07期
相关博士学位论文 前4条
1 宋磊;双馈异步风电机组状态监测与故障诊断系统的研究[D];华北电力大学;2015年
2 徐强;风电机组传动链状态诊断方法研究[D];华北电力大学;2015年
3 李敏通;柴油机振动信号特征提取与故障诊断方法研究[D];西北农林科技大学;2012年
4 王冬云;转子-轴承故障诊断方法研究[D];燕山大学;2012年
相关硕士学位论文 前10条
1 孙建;滚动轴承振动故障特征提取与寿命预测研究[D];大连理工大学;2015年
2 庞震;基于小波包分析的滚动轴承故障诊断[D];内蒙古科技大学;2014年
3 李娇娇;基于粗集—神经网络的风电机组状态评估及齿轮箱异常预警[D];华侨大学;2014年
4 张秀云;基于齿轮箱数据处理的故障预警与诊断系统[D];河北工业大学;2014年
5 徐颖剑;风电机组发电机故障分析诊断[D];华北电力大学;2013年
6 张任;基于振动信号的齿轮箱智能故障诊断方法研究[D];北京化工大学;2013年
7 赖达波;某齿轮箱故障振动信号特征提取及分析技术研究[D];电子科技大学;2013年
8 李淋淋;风力发电机组非参数模型状态监测关键问题研究[D];华北电力大学;2013年
9 张小田;基于回归分析的风机主要部件的故障预测方法研究[D];华北电力大学;2013年
10 王斐斐;基于状态监测信息的风电机组齿轮箱故障预测研究[D];华北电力大学;2012年
,本文编号:2253567
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2253567.html