当前位置:主页 > 科技论文 > 电气论文 >

电缆终端局部放电信号去噪方法研究

发布时间:2018-10-30 18:18
【摘要】:局部放电检测是电气设备故障诊断最有效的方法之一,被广泛应用于电缆附件故障诊断。但是,由于背景噪声的存在,尤其是白噪声的存在使得局部放电在线检测的灵敏度大大降低。白噪声的频率成分遍布整个频域,时域波形也遍布整个时域,这使得去除局放信号中的白噪声干扰成为局放信号去噪技术中的一个难点和热点研究课题。基于以上论述,本文以电缆终端局部放电检测为基础提出了两种局放信号去噪方法分别用以去除高信噪比和低信噪比下的白噪声干扰。主要研究内容如下:(1)分析了电缆终端发生故障的主要原因;设计制作了 4种电缆终端典型缺陷模型作为本文试验部分的试验对象开展局部放电试验;采集了 4种电缆终端典型缺陷的局放信号作为本文所提去噪方法的试验验证。(2)提出了一种基于峭度和时域能量的局放信号去噪方法,用以解决高信噪比下现有局放信号去噪方法计算速率慢、去噪后脉冲边沿不清晰的问题。首先通过计算染噪局放信号峭度实现局放脉冲的定位,进而确定局放脉冲峰值在整个数据窗中的位置以减小后续脉冲提取的计算量;其次通过分析白噪声与局放脉冲信号的时域能量差异,确定时域能量阈值及对应的时窗长度;最后以脉冲峰值为中心采用时域能量搜索的方法向两边搜索脉冲的边沿实现局部放电脉冲边沿检测及确定,进而实现局部放电脉冲提取。(3)提出了一种局放信号自适应稀疏分解去噪方法,同时构造了与局放信号对应的匹配原子库,用以提高局放信号去噪过程中MP算法的计算效率和去噪效果。基于信号快速谱峭度和S变换,迅速获取局放信号时频特性,其中包括中心频率、带宽、局放发生起始点和熄灭点的大概位置;利用局放信号的时频特性优化局放信号匹配原子库的时频参数,在对染噪局放信号进行MP计算时自适应选择少量原子进行寻优匹配;用各次迭代所得最佳匹配原子对原始局放脉冲信号进行稀疏表示,达到局放信号去噪目的。仿真及试验表明,本文所提出的两种局放信号去噪方法有效的解决了现有局放信号去噪方法去噪过程中所存在的去噪程序繁琐、计算速率慢、去噪不彻底、去噪后波形畸变问题。
[Abstract]:Partial discharge detection is one of the most effective methods for fault diagnosis of electrical equipment and is widely used in cable accessory fault diagnosis. However, because of the background noise, especially the white noise, the sensitivity of PD on-line detection is greatly reduced. The frequency components of white noise are all over the frequency domain, and the waveform of time domain is all over the time domain, which makes the removal of white noise interference from partial discharge signal become a difficult and hot research topic in the denoising technology of partial discharge signal. Based on the above discussion, based on the partial discharge detection of cable terminal, two kinds of partial discharge signal denoising methods are proposed to remove white noise interference at high signal-to-noise ratio and low signal-to-noise ratio respectively. The main research contents are as follows: (1) the main causes of cable terminal failure are analyzed, and four typical defect models of cable terminal are designed and made as the test object of this paper to carry out partial discharge test. Four kinds of partial discharge signals with typical defects of cable terminals are collected as experimental verification of the denoising methods proposed in this paper. (2) A denoising method for partial discharge signals based on kurtosis and time domain energy is proposed. It is used to solve the problem of slow calculation speed and unclear pulse edge of existing partial discharge signal denoising methods under high SNR. Firstly, the location of partial discharge pulse is realized by calculating the kurtosis of local discharge signal, and then the position of peak value of partial discharge pulse in the whole data window is determined to reduce the computation amount of subsequent pulse extraction. Secondly, by analyzing the time domain energy difference between white noise and partial discharge pulse signal, the time domain energy threshold and the corresponding time window length are determined. Finally, using the time-domain energy search method to search the edge of the pulse on both sides, the detection and determination of the partial discharge pulse edge can be realized by taking the peak value of the pulse as the center. Then partial discharge pulse extraction is realized. (3) an adaptive sparse decomposition de-noising method for partial discharge signal is proposed, and a matching atom library corresponding to partial discharge signal is constructed. In order to improve the computational efficiency and denoising effect of MP algorithm in the process of partial discharge signal denoising. Based on the fast spectral kurtosis and S-transform, the time-frequency characteristics of PD signal are obtained, including the center frequency, bandwidth, the starting point of PD and the approximate position of extinguishing point. The time-frequency parameters of the partial discharge signal matching atom library are optimized by using the time-frequency characteristic of partial discharge signal, and a small number of atoms are adaptively selected for optimal matching when MP calculation is carried out on the noisy partial discharge signal. The original PD pulse signal is represented sparsely by the best matching atoms obtained from each iteration to achieve the purpose of de-noising the PD signal. The simulation and experiments show that the two methods proposed in this paper can effectively solve the problem that the existing partial discharge signal denoising methods are complicated in the process of de-noising, slow calculation rate and incomplete de-noising. Waveform distortion after denoising.
【学位授予单位】:西南石油大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM855

【参考文献】

相关期刊论文 前10条

1 尚海昆;王坤;李峰;;基于集合经验模态分解法的局部放电信号去噪[J];东北电力大学学报;2016年04期

2 王恩俊;张建文;马晓伟;马鸿宇;;基于CEEMD-EEMD的局部放电阈值去噪新方法[J];电力系统保护与控制;2016年15期

3 何聪;袁川;曾伟;张安安;;XLPE高压电力电缆局部放电检测方法[J];电网与清洁能源;2016年05期

4 杨丰源;宋辉;程序;段大鹏;陶诗洋;侯慧娟;;基于改进EEMD和Cohen类的局部放电信号联合时频分析[J];高电压技术;2016年07期

5 宋亚奇;周国亮;朱永利;李莉;王德文;;云平台下并行总体经验模态分解局部放电信号去噪方法[J];电工技术学报;2015年18期

6 李军浩;韩旭涛;刘泽辉;李彦明;;电气设备局部放电检测技术述评[J];高电压技术;2015年08期

7 张宇辉;刘梦婕;黄南天;段伟润;李天云;;频率切片小波变换在局部放电信号分析中的应用[J];高电压技术;2015年07期

8 吴炬卓;牛海清;;基于提升小波分解的小波熵在抑制局部放电白噪声干扰中的应用[J];高压电器;2014年12期

9 尚海昆;苑津莎;王瑜;靳松;;平移不变小波迹消噪方法在局部放电检测中的应用[J];电工技术学报;2013年10期

10 陈刚;刘志刚;张巧革;;一种基于谱峭度的局部放电信号提取新方法[J];电力自动化设备;2013年08期

相关硕士学位论文 前7条

1 徐洋涛;基于HHT的电力电缆附件故障诊断技术研究[D];西南石油大学;2016年

2 鲁飞宇;希尔伯特—黄变换在变压器局部放电信号去噪与模式识别中的应用研究[D];西安电子科技大学;2013年

3 陈伟璇;局部放电信号的去噪算法研究[D];华南理工大学;2012年

4 周力;基于超高频的电缆及其附件产品局部放电检测系统的研究[D];湖南大学;2012年

5 纪新宇;XLPE电缆接头局部放电检测与模式识别的研究[D];华北电力大学;2012年

6 邵列;局部放电检测系统中的信号去噪与模式识别的研究[D];西安电子科技大学;2009年

7 张明霞;用小波技术滤除变压器局部放电信号中噪声的方法研究[D];重庆大学;2007年



本文编号:2300789

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2300789.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5f071***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com