变压器绕组变形诊断新方法的研究
[Abstract]:Transformer is one of the core equipments in power system. Its operation condition directly affects the safe and stable operation of power system. Winding deformation is one of the main fault types of transformer, which seriously threatens the normal operation of power system. In order to accurately diagnose transformer winding deformation and reduce transformer fault, on the basis of summarizing and analyzing the present research situation and some existing problems of transformer winding deformation detection method, the electrical information measured during transformer operation and maintenance is used. The diagnosis method of transformer winding deformation is studied from different angles. The research contents include the following aspects: a method of transformer winding deformation detection based on frequency response impedance method is found out. When the frequency response analysis method is tested, the accuracy of diagnosis is limited because of the interference of field noise and connection length. The impedance frequency characteristics of transformer windings in low and medium frequency bands are studied. Based on the test wiring of frequency response analysis, the relative voltage and current are measured, and the impedance frequency curves are calculated and processed. Contrast the difference between curves to realize the diagnosis of transformer winding deformation. The diagnostic results can be verified with the results of the frequency response analysis method, and the misjudgment caused by the field environment interference in the frequency response analysis method can be reduced. Simulation results show that this method can effectively identify different types of deformation of transformer windings. An on-line fault location method for transformer winding deformation based on integrated empirical mode decomposition and variable prediction model pattern recognition is proposed. The steep rise edge of transient overvoltage contains a large number of high-frequency components. When the transient overvoltage is impacted on the transformer, the energy loss of the voltage traveling wave in the winding deformation position is different from that in the normal position, which will be reflected in some frequency components of the traveling wave. The transient overvoltage signal is measured at the end of the winding. The integrated empirical mode decomposition method with adaptive white noise is used to process the data to obtain the intrinsic mode component, and the correlation coefficient is calculated as the fault characteristic. After training the pattern recognition method based on the variable prediction model, the prediction variable model is obtained, and the deformation position is located. The simulation results show that the method can reliably reflect the position of winding deformation and has high practical value. A method for on-line detection of transformer winding deformation based on variational mode decomposition and probability density estimation is proposed. Short-circuit reactance is an important basis for judging whether transformer windings are deformed or not. In actual measurement, short-circuit reactance presents a certain randomness due to field noise interference, thus affecting the judgment of winding state. Firstly, the variational mode decomposition is applied to the de-noising process of electrical signal to obtain the fundamental mode component, and then the short-circuit reactance is calculated on-line by using the fundamental mode component. Finally, the probability density function of the normal distribution of short-circuit reactance parameters is obtained by parameter estimation for short-circuit reactance samples obtained during the detection period, and the deviation coefficient of short-circuit reactance is calculated according to the estimated value of the mean value of short-circuit reactance distribution. Evaluate the current state of the winding. The simulation results show that the proposed method can stably obtain the short-circuit reactance estimation and avoid the interference of noise and measurement error, thus the winding deformation can be detected reliably.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM407
【参考文献】
相关期刊论文 前10条
1 张重远;王彦波;张林康;张欣;;基于NICS脉冲信号注入法的变压器绕组变形在线监测装置研究[J];高电压技术;2015年07期
2 沈明;尹毅;吴建东;王志浩;;变压器绕组变形在线监测实验研究[J];电工技术学报;2014年11期
3 赵志刚;李光范;李金忠;张书琦;刘锐;高飞;;基于有限元法的大型电力变压器抗短路能力分析[J];高电压技术;2014年10期
4 邓祥力;熊小伏;高亮;符杨;陈亚杰;;基于参数辨识的变压器绕组变形在线监测方法[J];中国电机工程学报;2014年28期
5 刘勇;崔彦捷;秦睿;汲胜昌;梁笑尘;朱生鸿;;套管故障对变压器频响曲线影响的仿真研究[J];高电压技术;2014年08期
6 姚周飞;张思良;尹毅;王志浩;;变压器在线频响法关键技术研究与实验分析[J];华东电力;2014年06期
7 杨晟;张文离;徐飞;;变压器绕组变形的频率响应分析法探讨[J];山西电力;2014年03期
8 刘月琴;陈涛;董月;;基于脉冲信号注入法的配电变压器绕组变形在线监测研究[J];电力科学与工程;2014年04期
9 李晨;李强;孙昭昌;程谋铨;;变压器绕组变形的影响因素及出口短路后分析[J];变压器;2013年08期
10 周利军;黄晓峰;李先浪;张志刚;;V/X接线牵引变压器短路电抗在线监测方法[J];西南交通大学学报;2013年04期
相关博士学位论文 前1条
1 武中利;电力变压器故障诊断方法研究[D];华北电力大学;2013年
相关硕士学位论文 前10条
1 刘利鹏;变压器绕组变形仿真与诊断方法研究[D];华北电力大学;2014年
2 何建;冲击电压作用下变压器绕组的高频模型及电压分布研究[D];湖南大学;2013年
3 刘兴平;配电变压器健康状态在线监测与评估方法研究[D];重庆大学;2013年
4 武炬臻;基于信号注入的变压器绕组变形在线监测技术[D];华北电力大学;2013年
5 姚周飞;基于SFRA的绕组变形在线监测技术研究[D];上海交通大学;2013年
6 张学星;变压器绕组变形诊断方法研究[D];北京交通大学;2012年
7 何構;基于短路电抗在线监测法的变压器绕组变形分析[D];浙江大学;2011年
8 刘锐;变压器绕组变形监测诊断技术研究[D];西南交通大学;2011年
9 王志娇;变压器绕组绝缘缺陷检测方法的研究[D];华北电力大学(北京);2011年
10 赖增凤;VFTO作用下大型变压器绕组暂态电压分布的研究[D];沈阳工业大学;2011年
,本文编号:2301609
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2301609.html