电能替代下的家居智能用电控制策略研究
[Abstract]:In recent years, the problem of haze is becoming more and more serious in China, and the substitution of electric energy is an effective measure to alleviate the problem of air pollution. With the development of electric power substitution and intelligent electricity-related technology, it is possible to optimize the control of residential electrical appliances. By analyzing the power consumption behavior of the residents, and then putting forward the corresponding power consumption optimization strategy, the purpose of cutting the peak and filling the valley and absorbing the new energy can be achieved. Firstly, based on the traditional time-sharing pricing mechanism and the electricity supply mode of electricity marketization, this paper analyzes the structure, interactive mode and implementation mechanism of residential intelligent electricity consumption. Then, the characteristics of household users' electricity consumption behavior are analyzed, and the main influencing factors of household users' electricity consumption behavior are extracted. On the basis of this analysis, a prediction method of user's electricity behavior based on support vector regression machine is proposed, and the simulation results show that this method can accurately predict the time when different users begin to use electrical appliances. Based on the analysis and prediction of user behavior, this paper studies the optimal control strategy of household intelligent power consumption under the traditional time-sharing pricing mechanism. This paper summarizes and analyzes the related research results of the existing intelligent power use optimization strategy, puts forward the concept of household appliance usage correlation degree and establishes the household appliance usage correlation degree matrix. Furthermore, a cost minimization algorithm is established with the aim of minimizing the user's electricity cost. The simulation results show that the algorithm can effectively reduce the user's electricity cost and improve the user's load curve while ensuring the user's normal electricity consumption. Finally, this paper puts forward a new power supply mode in the electricity market environment. The user authorizes the control of the appliance to the load aggregator and receives the subsidy from the load aggregator, and the load aggregator can uniformly regulate the same load of a large number of authorized loads. In this paper, a load group control strategy based on genetic algorithm is proposed, and an example of electric vehicle is given to verify the algorithm. The simulation results show that the algorithm can reduce the peak and fill the valley and absorb the new energy on the premise that the user's electricity is not affected.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM76
【参考文献】
相关期刊论文 前10条
1 高赐威;董力;孙玲玲;苏卫华;;售电侧放开下的需求响应[J];供用电;2017年03期
2 霍沫霖;何胜;;电力市场化改革对需求响应的影响[J];供用电;2017年03期
3 裴海波;李德智;韩婉娇;郭万祝;;面向新能源消纳的电能替代技术[J];电力需求侧管理;2016年06期
4 孙毅;许鹏;单葆国;祁兵;;售电侧改革背景下“互联网+”电能替代发展路线[J];电网技术;2016年12期
5 李作锋;;江苏电能替代的研究与实践[J];电力需求侧管理;2016年05期
6 孙毅;周爽;单葆国;贾德香;曹f ;;多情景下的电能替代潜力分析[J];电网技术;2017年01期
7 白杨;李昂;夏清;;新形势下电力市场营销模式与新型电价体系[J];电力系统保护与控制;2016年05期
8 梁晓丽;卢文冰;周海明;;能源转型中的电能替代[J];智能电网;2015年12期
9 付蔚;敬章浩;罗志勇;黄修谋;吴有义;;基于分时电价的智能家电控制方案[J];电网技术;2015年03期
10 赵莉;候兴哲;胡君;傅宏;孙洪亮;;基于改进k-means算法的海量智能用电数据分析[J];电网技术;2014年10期
相关博士学位论文 前1条
1 李秋硕;电动汽车接入电网的电能有序利用模型与控制策略研究[D];华北电力大学;2014年
相关硕士学位论文 前6条
1 鲁针针;考虑智能家电与分布式电源的电力需求响应技术研究[D];东南大学;2015年
2 宁阳天;基于削峰填谷的储能系统调度模型研究[D];华北电力大学;2015年
3 陈俊生;面向智能用电的需求响应技术及家庭用户用电策略研究[D];重庆大学;2014年
4 刘宝石;基于需求响应的家庭用电负荷控制策略研究[D];哈尔滨理工大学;2014年
5 吴伟坡;基于实时电价的智能家庭能源优化控制[D];上海交通大学;2013年
6 钟童科;大规模电动汽车的充放电行为及其对电网的影响研究[D];华南理工大学;2012年
,本文编号:2304402
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2304402.html