基于模糊推理脉冲神经膜系统的电网故障诊断方法
[Abstract]:With the continuous expansion of power network scale and the continuous improvement of interconnection, if failure occurs, if the fault can not be dealt with in time and effectively, it will evolve into a large-scale blackout accident, which will cause great economic losses to the society. In order to isolate the fault area and provide the basis for the subsequent work of power supply recovery, the dispatcher is required to complete the fault diagnosis quickly and accurately. However, a large number of fault multi-source information poured into the dispatching center in a short time, which not only provided the diagnostic basis, but also increased the difficulty of rapid and accurate fault diagnosis for the dispatcher, which would lead to the misjudgment and omission of the dispatcher. As a result, the fault situation is aggravated, resulting in a more serious blackout. Therefore, the research of fault diagnosis method has important practical significance for timely and effective fault diagnosis, ensuring power grid safety and stable operation. Fuzzy reasoning impulsive neural membrane system is a kind of computing model which can deal with uncertain factors by introducing fuzzy theory into membrane computing theory. It has the characteristics of intuitive graphical representation, parallelism, dynamic and uncertainty. Power network fault is a discrete dynamic evolution process, which is composed of a series of events, such as fault, protection action, circuit breaker tripping and so on, and is affected by uncertain factors. The characteristics of fuzzy inference pulse neural membrane system make it suitable to solve the power network fault diagnosis problem. In recent years, it has been applied in the field of power network fault diagnosis, and has been developed to a certain extent. Therefore, based on the existing fault diagnosis methods of power network based on fuzzy reasoning impulse neural membrane system, this paper continues to go deep. A fault diagnosis method based on fuzzy inference pulse neural membrane system based on multi-source fault information obtained from dispatching center is studied. It can use the alarm sequence information to identify the fault elements and to use the fault electrical information to judge the fault type, which can provide auxiliary decision for the dispatcher. In this paper, a method of fault element identification based on time-series fuzzy inference pulse neural membrane system is presented based on alarm timing information. In this method, a fault element identification model based on time-series fuzzy reasoning pulse neural membrane system is first established, and then the validity of alarm information is checked by time sequence consistency constraint, thus the initial confidence degree of protection and circuit breaker action information is corrected. Thus, the accuracy of the recognition results is improved. Finally, the effectiveness of the proposed method is tested by an example of IEEE 39 bus power network model, and the results are compared with those of other methods. A fault classification method based on wavelet transform and fuzzy inference pulse neural membrane system is presented based on the electrical information of transmission line fault. Firstly, wavelet transform and singular value decomposition are used to extract fault signal features, and then fault classification model based on fuzzy inference pulse neural membrane system is used to classify fault features to determine fault types. Taking 500kV transmission line fault model as an example, a lot of simulation analysis is done. The simulation results show that the method is independent of the fault initial angle, fault location and transition resistance, and has good adaptability to line parameters and noise.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM711
【相似文献】
相关期刊论文 前10条
1 侯玉t$;束洪春;;配电网故障诊断方法综述[J];云南水力发电;2007年04期
2 林圣;何正友;钱清泉;;输电网故障诊断方法综述与发展趋势[J];电力系统保护与控制;2010年04期
3 张旭;魏娟;赵冬梅;张东英;刘燕华;;电网故障诊断的研究历程及展望[J];电网技术;2013年10期
4 吴利剑;朱立忠;王琳琳;;故障诊断信息缺失情况下的电网故障诊断系统[J];沈阳理工大学学报;2014年02期
5 刘海宽,韩华,王全;保护电网故障诊断系统[J];佳木斯大学学报(自然科学版);2002年02期
6 聂晓棠,段奇志,彭志权;电网故障诊断新方法的研究[J];华中电力;2004年05期
7 毛鹏,张军林,许扬,茹锋;区域电网故障诊断系统设计[J];江苏电机工程;2005年06期
8 陈玉林;陈允平;孙金莉;邱君玛;;电网故障诊断方法综述[J];中国电力;2006年05期
9 翁汉t ;毛鹏;林湘宁;;一种改进的电网故障诊断优化模型[J];电力系统自动化;2007年07期
10 栗然;仇晓龙;;基于模糊Petri网的输电网故障诊断改进方法[J];中国电力;2008年05期
相关会议论文 前6条
1 王强;刘震;;电网故障诊断研究[A];山东电机工程学会2011年学术年会论文集[C];2011年
2 王强;刘震;;电网故障诊断研究[A];第十九届输配电研讨会论文集[C];2011年
3 高玮;何正友;杨建维;刘超;;量子神经网络的电网故障诊断方法[A];中国高等学校电力系统及其自动化专业第二十四届学术年会论文集(中册)[C];2008年
4 孙秋野;张化光;李钟旭;周建国;;数据驱动的不确定信息下智能电网故障诊断[A];2011年中国智能自动化学术会议论文集(第一分册)[C];2011年
5 祝亚静;顾雪平;;基于粗糙集理论和证据理论相结合的电网故障诊断[A];中国高等学校电力系统及其自动化专业第二十四届学术年会论文集(中册)[C];2008年
6 孟祥萍;刘春玲;耿卫星;潘莹;司春旺;;基于EMS、SCADA状态信息的电网故障诊断方法[A];2006电力系统自动化学术交流研讨大会论文集[C];2006年
相关博士学位论文 前9条
1 赵冬梅;基于多信息源的电网故障诊断方法的研究[D];华北电力大学(北京);2005年
2 刘道兵;电网故障诊断的解析化建模与求解[D];华北电力大学;2012年
3 刘思华;电网故障诊断方法的研究[D];山东大学;2010年
4 杨健维;基于模糊Petri网的电网故障诊断方法研究[D];西南交通大学;2011年
5 王磊;电网故障诊断方法及其系统架构研究[D];山东大学;2013年
6 周永勇;配电网故障诊断、定位及恢复方法研究[D];重庆大学;2010年
7 周子冠;电网多数据源在线诊断方法研究[D];中国电力科学研究院;2010年
8 徐青山;基于混沌载波优化及行波多分辨理论的输电网故障诊断[D];东南大学;2006年
9 周曙;基于贝叶斯网的电力系统故障诊断方法研究[D];西南交通大学;2010年
相关硕士学位论文 前10条
1 朱元林;在线电网故障诊断预处理功能的研究[D];华北电力大学(北京);2011年
2 赵培哲;基于贝叶斯网的电网故障诊断技术[D];湖南工业大学;2015年
3 方志宏;基于故障录波数据的分析软件设计与电网故障诊断方法[D];西南交通大学;2015年
4 罗孝辉;基于改进贝叶斯网络和Hibert-Huang变换的多源信息融合电网故障诊断方法[D];西南交通大学;2015年
5 刘大伟;基于开关量和电气量的电网故障诊断[D];山东大学;2015年
6 衣得源;一种基于模糊Petri网的电网故障诊断方法研究与设计[D];东北大学;2013年
7 张立颖;多数据源信息融合的电网故障诊断方法研究[D];东北大学;2013年
8 孙亚;基于分层理论的电网故障诊断及脆弱性评估方法研究[D];东北大学;2014年
9 史佳琪;基于解析模型的输电网故障诊断技术的研究[D];东北大学;2014年
10 李宗辉;配电网故障诊断系统[D];福州大学;2014年
,本文编号:2309504
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2309504.html