基于分岔理论的电力系统电压稳定分析及控制策略研究
[Abstract]:With the development of industry and information technology in the 21st century and the continuous improvement of people's living standard, industrial production equipment, household appliances and other power supply quality are constantly put forward higher requirements, how to provide more security and stability, Reliable power supply has become the research direction of modern power system related technology. The quality of power system is measured by voltage, frequency and harmonics. As several voltage instability accidents in the world have seriously affected the production and life of the society and people at that time, in recent years, the voltage stability of the power system has attracted the attention of the society and the International Electrotechnical Institute. With the continuous progress of power industry, modern power system is increasingly developing towards the direction of large power grid, large units, UHV long-distance transmission, the use of various distributed power sources, new energy grid connection and reactive power compensation, etc. The operation conditions of power system are becoming more and more complex and the dynamic factors are increasing, which makes it more difficult to maintain the voltage stability of the power network. In this context, various uncertain factors and dynamic effects such as dynamic load, dynamic characteristics of reactive power compensator, dynamic characteristics of generator and electromagnetic power disturbance are considered in this paper. Two different power system models are improved respectively. Using the method of voltage stability bifurcation analysis and using time domain simulation and chaos theory as a supplement, the voltage instability process and mechanism of power system under various load conditions and voltage stability region are studied. The load margin and power transmission limit are analyzed. On this basis, two kinds of nonlinear voltage stability controllers are designed based on the finite time stability principle and the diagonal matrix asymptotic stability principle, respectively, and the effectiveness of the controller is verified by numerical simulation. Firstly, the traditional single-machine PQ dynamic load power system model is improved, considering the electromagnetic power disturbance, the system has two uncertain parameters and is supported by the static Var compensator (SVC). Taking reactive power compensation gain k _ (SVC) and reactive load QD as bifurcation parameters (i.e. uncertain parameters), the one-dimensional equilibrium solution manifold (voltage curve) and time-domain simulation diagram of the system are analyzed by bifurcation theory and chaos theory. The physical mechanism of the system from voltage instability to collapse is obtained. The voltage stability limit, reactive load margin and SVC gain adjustment margin are analyzed by using the two-dimensional bifurcation curve of the system. Finally, the controller is designed based on the finite time stability control principle, and the nonlinear voltage stability control of the system is realized. Secondly, considering that the system has three uncertain parameters, the single-parameter power system model with Walve dynamic load is rededuced, and the mathematical model with PSP _ 1Q _ S _ 1 and P _ S _ m as undetermined parameters is obtained. Using the voltage curve, phase locus, maximum LE spectrum and bifurcation diagram, the voltage stability characteristics and the operating state of the system under various loads are comprehensively analyzed. The voltage stability of the system is analyzed with two parameters and three parameters. The voltage stability boundary, power transmission limit and load dynamic characteristics of the system are obtained. Finally, a novel nonlinear voltage stability controller based on the diagonal matrix asymptotic stability principle is proposed. The Matlab simulation shows that the controller can effectively suppress the voltage instability in power system. The voltage stability of the system is improved and the system is robust.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM712
【参考文献】
相关期刊论文 前10条
1 张明锐;梅杰;李元浩;欧阳丽;;基于切换仿射系统的风电电压稳定控制[J];电工技术学报;2016年03期
2 李晓明;黄大为;于娜;;发电机励磁系统参数对系统动态电压恢复的影响分析[J];广东电力;2015年10期
3 张栩;刘雪茹;;励磁放大倍数对系统电压稳定性的影响研究[J];电源技术;2015年06期
4 陈仕龙;谢佳伟;毕贵红;张杰;张文英;高超;;一种特高压直流输电线路神经网络双端故障测距新方法[J];电工技术学报;2015年04期
5 孙辉;李峻;胡姝博;周玮;陈晓东;金晓明;刘淼;李春平;;基于动态潮流的非线性规划法求解电压稳定裕度[J];电力系统保护与控制;2014年18期
6 王卓欣;李禹鹏;;电力系统电压稳定分析方法综述[J];电力与能源;2014年03期
7 许晓菲;牟涛;贾琳;江长明;高洵;刘纯;;大规模风电汇集系统静态电压稳定实用判据与控制[J];电力系统自动化;2014年09期
8 闵富红;马美玲;翟炜;王恩荣;;基于继电特性函数的互联电力系统混沌控制[J];物理学报;2014年05期
9 熊桥坡;罗安;王晓;黎小聪;马伏军;肖华根;;链式静止无功发生器直流侧电压稳定性分析[J];电力系统自动化;2014年03期
10 李娟;薄明明;赵迎春;宋彬彬;刘志士;;动态连续潮流与自适应混沌粒子群结合计算静态电压稳定裕度[J];电工电能新技术;2014年01期
相关博士学位论文 前2条
1 赵兴勇;基于分岔理论的电力系统电压稳定性研究[D];上海交通大学;2008年
2 刘菲;非线性气动弹性系统的分叉分析[D];西南交通大学;2007年
相关硕士学位论文 前10条
1 文一宇;基于外网等值的静态电压稳定分析与广域控制方法研究[D];重庆大学;2011年
2 殷宏涛;交直流互联方式下山东电网电压静态稳定性分析[D];山东大学;2011年
3 苟旭;基于分岔理论的电力系统电压稳定性研究[D];重庆大学;2010年
4 何亦蕊;基于精细积分法的电力系统动态电压稳定仿真研究[D];哈尔滨工业大学;2008年
5 刘梦欣;多机电力系统励磁和广义Hamilton实现控制方法与应用[D];上海交通大学;2008年
6 李险峰;时滞状态反馈控制下的Duffing系统的分岔及混沌控制[D];兰州交通大学;2007年
7 陈敏;基于最小奇异值灵敏度的静态电压稳定分析与研究[D];华中科技大学;2007年
8 殷红德;分岔理论在含FACTS装置电力系统电压稳定性分析中的应用研究[D];郑州大学;2006年
9 张维莉;电力系统静态电压稳定性分析与校正控制研究[D];河海大学;2006年
10 刘韶峰;分岔理论与AUTO97在电力系统电压稳定性分析中的应用研究[D];郑州大学;2004年
,本文编号:2311206
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2311206.html