基于电压相量和深度学习的电力系统暂态稳定快速评估
[Abstract]:In recent years, China, the United States, India and other countries have had a number of large-scale power outages, resulting in huge economic losses and social impact. With the further growth of renewable energy, power load and the wide application of electronization in power system, the uncertainty and complexity of power grid operation are increased, so the safe and stable operation of power network is facing severe challenges. With the rise of artificial intelligence and deep learning, it provides a solid theoretical basis for researchers to analyze the security and stability of power grid information physical systems from the perspective of big data, large samples and probabilities. In this paper, the deep convolution network (CNN) technique is used to construct a visual full information grid diagram, and the CNN method is introduced to the transient security stability analysis of power system. On the basis of summing up and analyzing the previous work, combined with the method of branch potential energy, the mechanism of power grid "tearing" in the process of system transient visualization is explained. A fast method for judging the weak section and transient stability of power system is proposed. Based on the results of visualization and theoretical analysis, a deep convolution neural network is constructed to analyze the transient stability of power system. The main contents of this paper are as follows: (1) A dynamic visual grid diagram is constructed. The power system mapping plane based on voltage complex plane is established. Taking 39 nodes of IEEE 10 machine as an example, the simulation data and the existing topology connection are obtained. The node information of the system is dynamically displayed on the voltage complex plane based on Echart. (2) the power system transient stability analysis model based on the voltage complex plane dynamic information is established. From the point of view of weak section, the relationship between the voltage phasor distance and the branch of the oscillation center drop point is analyzed, and the method to identify the weak section quickly is given. On this basis, the phase locus characteristics of the side bus of the weak section leading cluster are further analyzed, and a method of judging transient stability based on the phase trace characteristics of the weak section is proposed. (3) A batch manufacturing program is developed. Provide enough samples for deep learning. The depth learning method is applied to power system transient stability evaluation by using depth learning method for data processing in artificial vision field to deal with image pixel matrix. Through the experimental method, the suitable model parameters are determined, and a multi-window sliding identification method is proposed to identify the transient stability of power system, which reduces the parameters of the model and improves the accuracy of judgment.
【学位授予单位】:中国电力科学研究院
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM712
【参考文献】
相关期刊论文 前10条
1 马世龙;乌尼日其其格;李小平;;大数据与深度学习综述[J];智能系统学报;2016年06期
2 邵瑶;汤涌;易俊;王安斯;;土耳其“3·31”大停电事故分析及启示[J];电力系统自动化;2016年23期
3 李柏青;刘道伟;秦晓辉;严剑峰;;信息驱动的大电网全景安全防御概念及理论框架[J];中国电机工程学报;2016年21期
4 郑超;苗田;;交流薄弱断面中关键支路动态识别及稳定控制[J];中国电机工程学报;2015年21期
5 岑炳成;唐飞;廖清芬;晏阳;唐昱恒;董飞飞;李瑾瑜;;应用功角空间降维变换的相轨迹判别系统暂态稳定性[J];中国电机工程学报;2015年11期
6 苟竞;刘俊勇;Gareth Taylor;Christopher Saunders;刘友波;刘洋;;基于发电机对暂态势能集的电力系统暂态稳定快速评估[J];电网技术;2015年02期
7 刘道伟;张东霞;孙华东;马世英;李柏青;朱朝阳;易俊;郑超;秦晓辉;许鹏飞;杨学涛;;时空大数据环境下的大电网稳定态势量化评估与自适应防控体系构建[J];中国电机工程学报;2015年02期
8 王亚俊;王波;唐飞;陈得治;王静;王乙斐;周雨田;;基于响应轨迹和核心向量机的电力系统在线暂态稳定评估[J];中国电机工程学报;2014年19期
9 杨胜春;汤必强;姚建国;李峰;於益军;冯树海;;基于态势感知的电网自动智能调度架构及关键技术[J];电网技术;2014年01期
10 顾卓远;汤涌;孙华东;刘楠;秦晓辉;张妍;;一种基于转速差 功角差变化趋势的暂态功角稳定辨识方法[J];中国电机工程学报;2013年31期
相关博士学位论文 前1条
1 叶圣永;基于机器学习的电力系统暂态稳定评估研究[D];西南交通大学;2010年
相关硕士学位论文 前2条
1 黎萌;电力系统暂态稳定时域仿真终止判据的研究[D];浙江大学;2015年
2 杜浩;基于网格与并行技术的电力系统动态安全评估[D];上海交通大学;2011年
,本文编号:2311991
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2311991.html