当前位置:主页 > 科技论文 > 电气论文 >

多元纳米多孔复合电极的制备与性能研究

发布时间:2018-11-09 15:08
【摘要】:超级电容器因为具有高功率密度,充放电速度快,循环使用寿命长,绿色安全等优点受到研究学者的广泛关注。基于过渡族金属氧化物的赝电容器电极材料因为具有高的能量密度成为一种非常具有应用前景的电容器电极材料,但是金属氧化物因为导电性差成为其制约因素。当前许多研究通过添加导电增强体可制备出纳米结构材料来提高金属氧化物的导电性,但是采用此种方法同样因为界面结合力差以及活性物质负载不均匀而影响其性能。通过在纳米多孔金属表面自生长一层氧化物可有效解决导电性差以及界面结合力差的缺点,本论文在二元NiMn、二元NiCuMn的基础上通过引入具有高稳定性、高理论比电容的钴氧化物成功制备出具有高电位窗口,高体积比电容的新型NiCoMn三元复合电极,同时考虑引入价格低廉的铁、铜对不同体系进行电化学综合性能研究。研究主要内容为:(1)根据相图制备出不同体系的厚度为25um的合金条带。EDX及XRD表征表明合金条带成分均匀属于单相固溶体,有利于形成孔径分布均匀的三维纳米多孔结构。(2)采用脱合金化法成功制备出孔径分布均匀的纳米多孔合金。XPS表征显示不同体系中金属元素均存在不同价态或者轨道的金属阳离子,且分析氧元素也存在三种结合形式,其中金属氧化物和氢氧化物的含量高有利于提高电化学性能。BET分析,其孔径分布均为1~10nm之间,比表面积以Ni20C10Mn70电极最大为48m2/g有利于负载更多的活性物质。TEM分析其孔径分布与BET测试一致,对不同衍射斑点分析纳米多孔金属氧化物电极存在两种不同的相。(3)对不同体系进行电化学性能测试发现,NiFeMn体系因为Fe和Cu的理论比电容低很难得到高比电容的电极材料,但是其体积比电容高达921F/cm~3。而对不同成分的NiCoMn体系研究发现,合金体系为Ni20Co10Mn70制备的电极电化学性能最优,在有效工作电位窗口为1.5V下,比电容高达2012F/cm~3,其能量密度高达114mWh/cm~3,高于当前实际应用电容器近5倍以上,两电极测试结果与三电极性能相近。
[Abstract]:Because of its high power density, high charge and discharge speed, long cycle life and green safety, supercapacitors have attracted much attention. Due to its high energy density, pseudo-capacitor electrode materials based on transition metal oxides have become a promising electrode material for capacitors, but metal oxides have become the limiting factors because of their poor conductivity. At present, many researches can improve the electrical conductivity of metal oxides by adding conductive reinforcements. However, this method also affects the properties of metal oxides because of poor interfacial adhesion and uneven loading of active substances. By self-growing a layer of oxide on the surface of nano-porous metal, the shortcomings of poor electrical conductivity and poor interfacial adhesion can be effectively solved. In this paper, the introduction of binary NiMn, binary NiCuMn has high stability. A novel NiCoMn ternary composite electrode with high potential window and high volume specific capacitance was successfully prepared by cobalt oxide with high theoretical specific capacitance. At the same time, the electrochemical comprehensive properties of different systems were studied by introducing low-cost iron and copper. The main contents of the study are as follows: (1) the alloy strips with different 25um thickness have been prepared according to the phase diagram. The results of EDX and XRD show that the alloy bands are homogeneous single-phase solid solution. (2) Nano-porous alloy with uniform pore size distribution was successfully prepared by dealloying method. XPS characterization showed that there were different valence of metal elements in different systems. Metal cations in states or orbits, There are also three kinds of binding forms for the analysis of oxygen elements, among which the high content of metal oxides and hydroxides is beneficial to the improvement of electrochemical performance. The pore size distribution in BET analysis is between 1~10nm and hydroxide. The maximum specific surface area of Ni20C10Mn70 electrode for 48m2/g is favorable for loading more active substances. The pore size distribution of TEM is consistent with that of BET. Different diffraction spots were used to analyze the existence of two different phases in nano-porous metal oxide electrodes. (3) the electrochemical properties of different systems were tested. It is difficult to obtain high specific capacitance electrode material in NiFeMn system because the theory of Fe and Cu is lower than that of capacitance, but its volume specific capacitance is as high as 921 F / cm ~ (3). On the other hand, the electrochemical properties of the electrode prepared by Ni20Co10Mn70 were found to be the best in the NiCoMn system with different composition. The specific capacitance of the electrode was up to 2012F / cm ~ (-1) and the energy density of the electrode was up to 114mWh/ cm ~ (3) under the effective working potential window of 1.5 V. The performance of the two electrodes is similar to that of the three electrodes.
【学位授予单位】:天津工业大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TB383.1;TM53

【相似文献】

相关期刊论文 前10条

1 许开卿;吴季怀;范乐庆;冷晴;钟欣;兰章;黄妙良;林建明;;水凝胶聚合物电解质超级电容器研究进展[J];材料导报;2011年15期

2 梓文;;超高能超级电容器[J];兵器材料科学与工程;2013年04期

3 ;欧盟创新型大功率超级电容器问世[J];功能材料信息;2014年01期

4 周霞芳;;无污染 充电快 春节后有望面市 周国泰院士解密“超级电容器”[J];环境与生活;2012年01期

5 江奇,瞿美臻,张伯兰,于作龙;电化学超级电容器电极材料的研究进展[J];无机材料学报;2002年04期

6 朱修锋,王君,景晓燕,张密林;超级电容器电极材料[J];化工新型材料;2002年04期

7 景茂祥,沈湘黔,沈裕军,邓春明,翟海军;超级电容器氧化物电极材料的研究进展[J];矿冶工程;2003年02期

8 朱磊,吴伯荣,陈晖,刘明义,简旭宇,李志强;超级电容器研究及其应用[J];稀有金属;2003年03期

9 贺福;碳(炭)材料与超级电容器[J];高科技纤维与应用;2005年03期

10 邓梅根,杨邦朝,胡永达;卷绕式活性炭纤维布超级电容器的研究[J];功能材料;2005年08期

相关会议论文 前10条

1 马衍伟;张熊;余鹏;陈尧;;新型超级电容器纳米电极材料的研究[A];2009中国功能材料科技与产业高层论坛论文集[C];2009年

2 张易宁;何腾云;;超级电容器电极材料的最新研究进展[A];第二十八届全国化学与物理电源学术年会论文集[C];2009年

3 钟辉;曾庆聪;吴丁财;符若文;;聚苯乙烯基层次孔碳的活化及其在超级电容器中的应用[A];中国化学会第15届反应性高分子学术讨论会论文摘要预印集[C];2010年

4 赵家昌;赖春艳;戴扬;解晶莹;;扣式超级电容器组的研制[A];第十二届中国固态离子学学术会议论文集[C];2004年

5 单既成;陈维英;;超级电容器与通信备用电源[A];通信电源新技术论坛——2008通信电源学术研讨会论文集[C];2008年

6 王燕;吴英鹏;黄毅;马延风;陈永胜;;单层石墨用作超级电容器的研究[A];2009年全国高分子学术论文报告会论文摘要集(上册)[C];2009年

7 赵健伟;倪文彬;王登超;黄忠杰;;超级电容器电极材料的设计、制备及性质研究[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年

8 张琦;郑明森;董全峰;田昭武;;基于薄液层反应的新型超级电容器——多孔碳电极材料的影响[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年

9 马衍伟;;新型超级电容器石墨烯电极材料的研究[A];第七届中国功能材料及其应用学术会议论文集(第7分册)[C];2010年

10 刘不厌;彭乔;孙s,

本文编号:2320763


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2320763.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户0ef2d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com