当前位置:主页 > 科技论文 > 电气论文 >

基于群智能的永磁同步电机故障诊断

发布时间:2018-11-12 20:32
【摘要】:自动化和智能化是当今工业系统的发展趋势,而系统的稳定性是自动化和智能化实现的前提。永磁同步电机(Permanent Magnet Synchronous Motor,PMSM)同时具有高效率、高功率密度以及强鲁棒性等性能,现代化工业领域已离不开PMSM的应用,尤其是在精密控制领域的应用。当电机发生故障而未能及时发现处理时,轻则电机本身损伤,重则损坏整个电机设备造成巨大的经济损失,因此对PMSM故障诊断的研究十分有必要,具有重大意义。而PMSM故障中最为常见的故障分别是驱动系统开路和定子匝间短路故障。本文采用群智能优化算法对PMSM驱动系统开路进行和PMSM定子匝间短路故障进行诊断研究。首先,本文在矢量控制的基础上,建立PMSM静态坐标下数学模型和dq轴数学模型,介绍电机的矢量变换原理,然后分别分析PMSM驱动系统开路和定子匝间短路故障状态下的数学模型。然后针对PMSM驱动系统开路故障,提出一种基于自适应二阶粒子群算法(Self-adaptive SECond-order Particle Swarm Optimization,SASECPSO)的改进极限学习机(Improved Extreme Learning Machine,IELM)算法。该SASECPSO算法采用自适应惯性权重策略及线性变化认知系数方法,提高二阶粒子群算法(SECond-order Particle Swarm Optimization,SECPSO)的收敛速度和收敛精度。此外,运用SASECPSO算法同时对极限学习机的输入权值和隐含层阈值参数优化,可提高极限学习机算法在PMSM故障中的识别率。以电机转速和ABC相电流作为多源样本数据,多组实验证明IELM算法相对于其他算法具有较高的诊断精度。最后针对PMSM常见的匝间短路故障,利用能量频谱分析提取特征向量,采用自适应动态猫群算法(ADAptive dynamic Cat Swarm Optimization,ADACSO)优化SVM的惩罚因子和核函数参数,随后将优化后的SVM用于电机故障诊断。以小波能量频谱得到的特征向量作为SVM算法的样本数据来进行仿真实验,结果表明,相对于其他优化算法,采用ADACSO优化SVM参数能够使SVM在PMSM故障诊断中具有更高的诊断精度和准确率。
[Abstract]:Automation and intelligence are the development trend of industrial system, and the stability of system is the premise of automation and intelligent realization. Permanent magnet synchronous motor (Permanent Magnet Synchronous Motor,PMSM) has high efficiency, high power density and strong robustness at the same time. Modern industry has been inseparable from the application of PMSM, especially in the field of precision control. When the motor fails to find and deal with the fault in time, the light motor itself will be damaged, and the heavy motor equipment will be damaged. Therefore, the study of PMSM fault diagnosis is very necessary and has great significance. The most common faults in PMSM are open circuit fault of drive system and short circuit fault of stator turn. In this paper, the open circuit of PMSM drive system and the fault diagnosis of PMSM stator inter-turn short circuit are studied by using swarm intelligence optimization algorithm. Firstly, on the basis of vector control, the mathematical model and dq axis mathematical model under PMSM static coordinate are established, and the vector transformation principle of motor is introduced. Then the mathematical models of PMSM drive system under open circuit and stator interturn short circuit are analyzed respectively. Then an improved extreme learning machine (Improved Extreme Learning Machine,IELM) algorithm based on adaptive second-order particle swarm optimization (Self-adaptive SECond-order Particle Swarm Optimization,SASECPSO) is proposed for the open circuit fault of PMSM drive system. The SASECPSO algorithm adopts adaptive inertial weight strategy and linear varying cognitive coefficient method to improve the convergence speed and accuracy of the second-order particle swarm optimization (SECond-order Particle Swarm Optimization,SECPSO) algorithm. In addition, using SASECPSO algorithm to optimize the input weights of LLM and threshold parameters of hidden layer at the same time, the recognition rate of LLM algorithm in PMSM fault can be improved. The speed of motor and the phase current of ABC are used as multi-source sample data. Many experiments show that the IELM algorithm has higher diagnostic accuracy than other algorithms. Finally, for the common inter-turn short circuit faults in PMSM, the eigenvector is extracted by energy spectrum analysis, and the penalty factor and kernel function parameters of SVM are optimized by adaptive dynamic cat swarm algorithm (ADAptive dynamic Cat Swarm Optimization,ADACSO). Then the optimized SVM is used in motor fault diagnosis. Using the eigenvector obtained from wavelet energy spectrum as the sample data of SVM algorithm, the simulation results show that, compared with other optimization algorithms, Using ADACSO to optimize SVM parameters can make SVM have higher diagnostic accuracy and accuracy in PMSM fault diagnosis.
【学位授予单位】:江南大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TP18;TM341

【参考文献】

相关期刊论文 前10条

1 朱群;尹忠刚;张延庆;钟彦儒;;基于粒子群优化算法的永磁同步电机H_∞速度观测器[J];西安理工大学学报;2016年02期

2 陆慧娟;魏莎莎;宋夫华;高波涌;;一种Fibonacci优化理论的改进ELM分类方法[J];小型微型计算机系统;2015年12期

3 肖汉;付俊芳;蔡大泉;周建中;肖剑;付文龙;;基于群智能加权核聚类的水电机组故障诊断[J];振动.测试与诊断;2015年04期

4 贺彦林;王晓;朱群雄;;基于主成分分析-改进的极限学习机方法的精对苯二甲酸醋酸含量软测量[J];控制理论与应用;2015年01期

5 付文龙;周建中;李超顺;肖汉;肖剑;朱文龙;;基于模糊K近邻支持向量数据描述的水电机组振动故障诊断研究[J];中国电机工程学报;2014年32期

6 史丽萍;王攀攀;胡泳军;韩丽;;基于骨干微粒群算法和支持向量机的电机转子断条故障诊断[J];电工技术学报;2014年01期

7 尹刚;张英堂;李志宁;任国全;孙宜权;;自适应集成极限学习机在故障诊断中的应用[J];振动.测试与诊断;2013年05期

8 吉哲;王修敏;张松涛;;基于BP神经网络的舰船电机故障诊断[J];电机与控制应用;2013年07期

9 谢辅雯;;蚁群优化BP神经网络的电机故障诊断设计与实现[J];制造业自动化;2012年10期

10 李彬;李贻斌;;基于ELM学习算法的混沌时间序列预测[J];天津大学学报;2011年08期

相关博士学位论文 前2条

1 马超;基于元启发优化极限学习机的分类算法及其应用研究[D];吉林大学;2014年

2 程军;基于生物行为机制的粒子群算法改进及应用[D];华南理工大学;2014年

相关硕士学位论文 前5条

1 侯雅晓;五相永磁同步电机系统故障诊断与容错控制技术研究[D];哈尔滨工业大学;2016年

2 杜博超;电动汽车用永磁同步电机的故障诊断[D];哈尔滨工业大学;2011年

3 王胤龙;稀土永磁电机振动故障诊断系统研究[D];沈阳工业大学;2008年

4 薛丽英;六相永磁同步电机驱动系统故障诊断与容错的研究[D];西北工业大学;2006年

5 张敬南;永磁电动机电力推进系统故障诊断专家系统技术研究[D];哈尔滨工程大学;2004年



本文编号:2328142

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2328142.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户5f32e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com