电铁牵引负荷扰动电流概率分布模型研究
[Abstract]:The traction load of electrified railway is an important single-phase load in the power system, at the same time, it is also one of the main harmonic sources in the power system. With the continuous improvement of the power quality monitoring system, It is of great significance to study the probability distribution model of electric traction load disturbance current based on the measured data. Based on the distribution histogram of measured data, the probability distribution of traction load is solved by curve fitting method. The method proposed in this paper can be used to solve the probability distribution of different measurement data such as voltage and current. Aiming at the problem that the maximum entropy method may lead to poor fitting effect due to falling into local optimum, an improved maximum entropy method based on the distribution characteristics of measured data is proposed, which makes the probability distribution more in line with the actual distribution characteristics. In view of the problem that cloud transformation method may not converge, a cloud transformation method considering negative number interval fitting is put forward. The cloud transformation method is used to fit the negative part, which reduces the requirement of cloud transform method to parameters and improves the convergence of the algorithm. Finally, according to the high accuracy of cloud transformation method and the simple probability density equation of maximum entropy method, a cloud entropy method is proposed to solve the probability distribution by combining the maximum entropy method and cloud transformation method. This method has the high accuracy of cloud transformation method. The probability density function is simple. In this paper, the fitting effect of the above methods is evaluated by fitting error parameters, and the correctness of the proposed method is verified by different data. In this paper, the probability density function obtained by cloud entropy method is used to form the test database of measured data, which overcomes the problems of large amount of measured data occupying large space and inconvenient use. Based on the information of train running schedule of traction station, a method of predicting harmonics in new or unmonitored traction station is proposed. The prediction database is obtained by cloud entropy method as a supplement to the test database. Based on the ETAP simulation model of a regional power network, the probability distribution model established by cloud entropy method is used to obtain the load level under a certain probability of traction load as simulation parameter, and the influence of traction load on the power quality of regional power network is analyzed. The possible power quality problems are pointed out and the corresponding treatment suggestions are given.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM711;TM74
【参考文献】
相关期刊论文 前10条
1 汤波;马世伟;林顺富;鲁月乔;叶建荣;陈光;;基于云理论的居民负荷集体谐波概率分布[J];电力系统自动化;2016年03期
2 关欣;孙贵东;衣晓;郭强;;累积量测序列的区间云变换及识别[J];控制与决策;2015年08期
3 赖雄鸣;王成;张勇;言兰;缑锦;;最大熵法在可靠度计算中的应用[J];计算力学学报;2015年01期
4 张杰;何多昌;张志学;;车网谐振机理分析及仿真研究[J];大功率变流技术;2014年06期
5 韩旭东;王斌;高仕斌;陈民武;;基于车网耦合的高速铁路AT供电系统谐振特性[J];西南交通大学学报;2014年04期
6 周nv;孙超;廖瑞金;李剑;张镒议;王时征;;基于云理论的变压器多重故障诊断及短期预测方法[J];高电压技术;2014年05期
7 张树兰;曹娜;于群;;电铁牵引供电系统的谐波仿真模型分析[J];电气传动自动化;2014年01期
8 李宏科;栗晓政;;高速电气化铁路供电系统电能质量仿真研究[J];电气时代;2014年01期
9 姜咪慧;王小君;娄竞;和敬涵;Tony Yip;;牵引站馈线谐波电流的分析与预测[J];电网技术;2014年01期
10 韩旭东;高仕斌;王斌;;牵引供电方案设计中谐波谐振问题研究[J];电力系统保护与控制;2013年15期
相关博士学位论文 前3条
1 许志伟;基于新型平衡变压器与感应滤波技术的电气化铁道电能质量治理研究[D];湖南大学;2014年
2 刘琦;基于云模型理论的模拟电路故障分类诊断的研究[D];河北工业大学;2013年
3 张丽艳;新建电气化铁路对电网电能质量影响的预测与对策分析研究[D];西南交通大学;2012年
相关硕士学位论文 前10条
1 李冲;电气化铁道电能质量的仿真与改善措施研究[D];华东交通大学;2014年
2 邱倩;电气化铁路牵引负荷电能质量评估方法[D];华北电力大学;2014年
3 刘莹;电气化铁路接入对电网电能质量的影响评估及治理研究[D];山东大学;2014年
4 姜咪慧;牵引负荷对地区电网电能质量的影响研究[D];北京交通大学;2014年
5 李坤鹏;电气化铁路功率调节器的研究[D];哈尔滨工业大学;2013年
6 陈辰杰;牵引变电所综合补偿的研究[D];华东交通大学;2013年
7 张凤全;基于混合滤波器的电气化铁道电能质量综合治理研究[D];华东交通大学;2013年
8 黄德华;谐波潮流及概率谐波潮流研究[D];华南理工大学;2013年
9 王紫钰;电气化铁路牵引负荷电能质量评估[D];华北电力大学;2013年
10 唐开林;新建电气化铁路电能质量影响预测研究[D];西南交通大学;2012年
,本文编号:2336413
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2336413.html