小型化宽带功率检测模块设计与实现
[Abstract]:Microwave power measurement has important academic and commercial value in microwave communication, radar, environmental remote sensing and medical research. Modern microwave power measurement technology is developing towards miniaturization, modularization and broadband. In this paper, the development of microwave power measurement technology at home and abroad is analyzed, and the overall index and implementation scheme of miniaturized wideband power measurement module are established according to the requirements of wideband microwave power related projects. It consists of microwave power coupler, switch filter bank, microwave power detector and display and protection circuit. The strip line directional coupler is designed in ADS09 and IE3D by the method of passing measurement, so that the power measurement system can be embedded in the system to be monitored in real time. The frequency band of the coupler is 6 GHz ~ 18 GHz, the coupling degree is 20 卤0.7 dB, the directivity is better than 16 dB, the insertion loss is less than 0.3 dB, the standing wave ratio is less than 1.2, and the size is smaller. Because the microwave signal is often mixed with harmonics in engineering application, the system uses the switch filter bank to realize the separation of fundamental wave and harmonic, which is the innovation of this measurement system. The microwave switch uses the high performance Agilent N1810UL electromechanical coaxial switch, the frequency is as high as 26.5 GHz, the insertion loss is less than 0.7 dB, the single pole double throw. The filter bank is composed of 6GHz / 10GHz / 10GHz / 10GHz two-channel bandpass filter with high Q value and low loss. The insertion loss of the two bandpass filters is less than 0.5 dB, the reflection is greater than 15 dB, the out-of-band suppression is larger than 40dB (partial 300MHz), and the performance is similar. The core part of microwave power detection system is microwave power detection module, which is also the focus of this paper. A Schottky diode detector based on SMS7630-061 is designed by adopting the circuit model of diode front-end wideband matching and back-end low-pass filtering. S parameters are used to simulate its reflection and insertion loss, and harmonic balance simulation is used to get the input power output voltage curve. The fabricated geophone is in the 6GHz~18GHz band, and the power range is-35dBm to 10 d Bm.. As the back-end signal processing part, the display and protection circuit module needs to convert the analog signal of the detection module into digital signal, and then get the corresponding power value by arithmetic mean filter, look-up table and piecewise linear interpolation algorithm. The ADC module of this system uses 24 bits ADS1220, to sample the precision high; the core controller is the ARM series STM32F103VCT6, integration function is rich; the input and output realizes the man-machine interaction under different situations through USART and LCD touch screen. In addition, when the comparator detects that the power exceeds a certain threshold, the MOSFET switch circuit will be controlled and the signal or power supply will be cut off to protect the key components in the microwave system. Finally, the mismatch error and temperature error in the measurement system are analyzed, and the corresponding error correction method is proposed. Finally, the design of miniaturized wideband power detection module is completed. The system has small size (about 250mm*75mm*55mm), flexible connection form and low cost. It can detect the power (average power) of 6GHz~18GHz wideband microwave signal in real time and accurately, and realize the separate measurement of fundamental power and harmonic power. The measuring error of-15dBm~30d Bm, is less than 卤0.4dB. it has the characteristics of miniaturization, digitalization, accuracy and reproducibility, and has the function of power overload alarm and automatic protection to microwave circuit system.
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TM933.3
【相似文献】
相关期刊论文 前10条
1 张贵军;8540系列多功能数字通用功率计[J];国外电子测量技术;1994年04期
2 于靖,李英娜;电校准激光中功率计的设计和量值稳定性考察[J];现代计量测试;1996年05期
3 唐军;新一代功率计[J];电信快报;1998年12期
4 ;利用取样功率计确定射频和微波装置的特性[J];电子测量技术;2001年04期
5 谢洪森;一种便携式智能中波功率计[J];电工技术杂志;2002年02期
6 Ken Yang;;精度为±1%的功率计设计[J];电子设计技术;2002年12期
7 ;±1%精度的功率计[J];电子设计应用;2003年04期
8 张池军;王厚军;曹佩韦;戴志坚;;一类纳瓦功率计的计量方法研究[J];仪器仪表学报;2007年04期
9 张玉亮;陶汝华;董伟伟;邓赞红;李达;王涛;赵义平;孟钢;周曙;王金梅;邵景珍;方晓东;;新型薄膜材料在激光能量/功率计应用中的新进展[J];激光杂志;2009年04期
10 ;泰克推出紧凑型射频、微波功率传感器/功率计[J];电子测量与仪器学报;2011年12期
相关会议论文 前10条
1 刘忆椿;;量热式功率计中量热体的直流微波替代实验[A];1989年全国微波会议论文集(上)[C];1989年
2 刘忆椿;;新型高灵敏度,宽频带,宽量程范围的毫米波量热式功率计[A];1987年全国微波会议论文集(中)[C];1987年
3 张旭光;;波导热偶功率计的原理与设计[A];1985年全国微波会议论文集[C];1985年
4 杨德顺;胡小培;;应用三端口反射计校准功率计[A];1991年全国微波会议论文集(卷Ⅱ)[C];1991年
5 赵爱英;;一种8mm功率探头的设计[A];2011年全国微波毫米波会议论文集(下册)[C];2011年
6 虞惠龙;胡海鹰;;大功率微波脉冲功率测量[A];中国工程物理研究院科技年报(1998)[C];1998年
7 高业胜;陈坤峰;全治科;;光纤功率计测量标准及其测量不确定度评定[A];第十一届全国光学测试学术讨论会论文(摘要集)[C];2006年
8 陈光远;汪显尧;;国内外功率计及功率传感器技术水平及发展动态[A];1993年全国微波会议论文集(下册)[C];1993年
9 张晓冰;于革;;电网功率潮流分析及功率计量新方法研究[A];2010电工测试技术学术交流会论文集[C];2010年
10 高业胜;陈坤峰;全治科;;低温辐射计用于光纤功率量值溯源方法研究[A];第十二届全国光学测试学术讨论会论文(摘要集)[C];2008年
相关重要报纸文章 前1条
1 山东 张秀峰 齐占元;用场强仪巧修发射机[N];电子报;2001年
相关硕士学位论文 前10条
1 夏贤青;小型化宽带功率检测模块设计与实现[D];电子科技大学;2016年
2 赵鹏举;大功率无源调配器的研制[D];电子科技大学;2016年
3 李新建;脉冲峰值与连续波中功率计自动校准系统的研制[D];南京理工大学;2008年
4 莫旭清;百瓦级激光功率的测量方法研究[D];湖北工业大学;2015年
5 张海阔;计量级毫米波功率计的研制[D];北京交通大学;2015年
6 张雨燕;微结构热电偶波功率计设计与制造[D];中国科学院电子学研究所;2000年
7 郝怀庆;三波长可见光功率计的技术研究[D];长春理工大学;2011年
8 翟杰;国家宽带功率基准传递系统的研究[D];北京交通大学;2008年
9 胡革;中频功率在线监测研究与实现[D];电子科技大学;2006年
10 荣攀;基于TD-SCDMA&GSM综测仪的终端快速功率校准的研究与实现[D];中国地质大学(北京);2013年
,本文编号:2337419
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2337419.html