当前位置:主页 > 科技论文 > 电气论文 >

基于关联规则的电力系统暂态稳定评估方法研究

发布时间:2018-11-17 13:36
【摘要】:电力系统暂态稳定评估是保障电力系统安全稳定运行的重要问题之一。传统的时域仿真法与直接法均遇到了各自难以克服的瓶颈问题。随着电力系统网络规模的逐渐扩大,计算量的迅速增加导致时域仿真法的计算速度难以满足在线监测和控制的需求。而直接法难以适用于复杂模型的问题限制了其在电力系统中的应用。近年来随着云计算、大数据等信息技术的快速发展以及在电力行业的广泛应用,基于机器学习技术的电力系统暂态稳定评估方法为在线稳定评估提供了一种新的方向,并逐渐取得了较大的进展。该类方法具有泛化能力强、评估速度快以及能够挖掘关键运行信息等优势,在电力系统在线暂态稳定评估领域中有着广阔的发展前景。本文将机器学习技术中的关联规则算法引入到电力系统暂态稳定评估研究中。在深入总结分析前人工作的基础上,从电网运行数据中挖掘可靠和易于理解的稳定判别规则,为实现大电网运行中的智能决策提供支持。首先,完成稳定信息数据库的建立工作。一方面,开发PSD-BPA软件的自动仿真计算接口程序,对新英格兰10机39节点系统不同运行方式下进行暂态稳定仿真计算,生成海量仿真样本集。另一方面,整理在线安全分析系统中某跨地区电网某月的历史数据,作为另外一份以待研究的数据样本集。其次,提出了一种基于加权随机森林与递归特征消除策略相结合的特征选择方法,找出影响稳定水平的关键特征和因素,去除冗余输入特征,提高关联规则计算的效率和规则的可解释性。然后,由于绝大部分系统状态变量为连续量,而离散化连续特征量是关联规则必不可少的数据预处理步骤之一。本章在总结Chi Merge离散化算法不足之处的基础上对该算法予以改进,并利用改进算法将连续数据离散化到各个离散区间中。最后,在前几章的基础上,将基于FP-Growth算法实现关联规则分析算法应用于电力系统暂态稳定评估中,初步完成暂态稳定评估规则库的构建工作,并分析了部分规则的作用和意义。
[Abstract]:Transient stability assessment of power system is one of the important problems to ensure the safe and stable operation of power system. The traditional time domain simulation method and direct method both meet the bottleneck problem which is difficult to overcome. With the expansion of power system network, the calculation speed of time-domain simulation method is difficult to meet the need of on-line monitoring and control. However, the application of direct method in power system is limited by the problem that it is difficult to be applied to complex model. In recent years, with the rapid development of cloud computing, big data and other information technology, as well as the wide application in the power industry, the power system transient stability assessment method based on machine learning technology provides a new direction for on-line stability assessment. And gradually made great progress. This kind of method has the advantages of strong generalization ability, fast evaluation speed and the ability to mine key operation information, so it has a broad development prospect in the field of on-line transient stability assessment of power systems. In this paper, the association rule algorithm of machine learning technology is introduced into the study of power system transient stability evaluation. On the basis of summing up and analyzing the previous work, the stable discriminant rules which are reliable and easy to understand are mined from the operation data of power grid, which provides support for intelligent decision making in the operation of large power grid. First of all, the establishment of stable information database is completed. On the one hand, the automatic simulation and calculation interface program of PSD-BPA software is developed to simulate transient stability of New England 10-machine 39-bus system under different operation modes, and a mass of simulation samples are generated. On the other hand, the historical data of a cross-region power grid in the online security analysis system are collated as another sample set of data to be studied. Secondly, a feature selection method based on the combination of weighted stochastic forest and recursive feature elimination strategy is proposed to find out the key features and factors that affect the stability level, and to remove redundant input features. Improve the efficiency of computing association rules and the interpretability of rules. Then, because most of the system state variables are continuous, discrete continuous feature is one of the necessary data preprocessing steps for association rules. On the basis of summarizing the shortcomings of Chi Merge discretization algorithm, this chapter improves the algorithm and uses the improved algorithm to discretize the continuous data into each discrete interval. Finally, on the basis of the previous chapters, the association rule analysis algorithm based on FP-Growth algorithm is applied to power system transient stability evaluation, and the construction of transient stability assessment rule base is preliminarily completed. The function and significance of some rules are analyzed.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM712

【参考文献】

相关期刊论文 前10条

1 张春;田芳;于之虹;李岩松;张爽;田蓓;;改进Sammon映射算法在分析暂态稳定评估输入特征有效性中的应用[J];电力建设;2016年12期

2 赵晋泉;邓晖;吴小辰;徐光虎;金小明;张勇;;基于广域响应的电力系统暂态稳定控制技术评述[J];电力系统保护与控制;2016年05期

3 李亚楼;张星;李勇杰;陈绪江;吴茂乾;;交直流混联大电网仿真技术现状及面临挑战[J];电力建设;2015年12期

4 黄天恩;孙宏斌;郭庆来;温柏坚;王彬;;基于电网运行仿真大数据的知识管理和超前安全预警[J];电网技术;2015年11期

5 于之虹;黄彦浩;鲁广明;史东宇;周孝信;严剑峰;卜广全;田芳;李亚楼;;基于时间序列关联分析的稳定运行规则提取方法[J];中国电机工程学报;2015年03期

6 王亚俊;王波;唐飞;陈得治;王静;王乙斐;周雨田;;基于响应轨迹和核心向量机的电力系统在线暂态稳定评估[J];中国电机工程学报;2014年19期

7 金洲;王儒敬;;基于信息熵的兴趣度规则挖掘算法[J];模式识别与人工智能;2014年06期

8 吴为;汤涌;孙华东;徐式蕴;;基于广域量测信息的电力系统暂态稳定研究综述[J];电网技术;2012年09期

9 李晨;蒋德珑;程生安;;电力系统暂态稳定分析方法的现状与发展[J];现代电子技术;2012年16期

10 桑雨;李克秋;闫德勤;;基于改进χ2统计的数据离散化算法[J];大连理工大学学报;2012年03期

相关博士学位论文 前4条

1 李杨;基于广域动态信息的电力系统暂态稳定评估研究[D];华北电力大学;2014年

2 吴为;基于响应的电力系统暂态稳定性实时判别与控制技术的研究[D];中国电力科学研究院;2014年

3 孙鑫;机器学习中特征选问题研究[D];吉林大学;2013年

4 叶圣永;基于机器学习的电力系统暂态稳定评估研究[D];西南交通大学;2010年

相关硕士学位论文 前10条

1 黎萌;电力系统暂态稳定时域仿真终止判据的研究[D];浙江大学;2015年

2 黎成;基于随机森林和ReliefF的致病SNP识别方法[D];西安电子科技大学;2014年

3 罗燕;基于关联规则的电压暂降预测预警系统研究与实现[D];华北电力大学;2014年

4 张启飞;基于广域测量系统的电力系统暂态稳定预测[D];山西大学;2013年

5 黄若寅;基于能量函数法的电力系统暂态稳定在线识别及算法研究[D];华中科技大学;2013年

6 迟丽宁;基于FP-Growth的分类规则挖掘算法及其应用[D];青岛大学;2012年

7 杜浩;基于网格与并行技术的电力系统动态安全评估[D];上海交通大学;2011年

8 徐岩;特征裁剪技术研究及其在电力系统数据驱动的暂态稳定评估中的应用[D];华南理工大学;2011年

9 林琳;基于暂态能量函数法的电力系统安全性评估[D];华北电力大学;2011年

10 章小强;智能稳定评估中的关键特征识别研究[D];华南理工大学;2010年



本文编号:2337979

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2337979.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户1f3b3***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com