基于振动分析的高压断路器机械故障诊断研究
[Abstract]:High-voltage circuit breaker plays an important role in the power system, it is responsible for the control and protection of the system. Under the normal operation condition, the high voltage circuit breaker controls the switching operation of the circuit and equipment; when the fault occurs, the fault line is cut off quickly to prevent the further expansion of the fault. Therefore, once the high voltage circuit breaker breaks down, it will directly endanger the reliability of the system, and may cause significant loss of power. The investigation at home and abroad shows that most of the faults of circuit breakers are caused by mechanical reasons, so it is of great practical significance to study the mechanical fault diagnosis of high voltage circuit breakers. The vibration signal generated during the switching operation of high voltage circuit breakers contains important state information. In this paper, the mechanical state of high voltage circuit breakers is obtained by processing and analyzing the vibration signals of circuit breakers. The main research contents include three parts: signal acquisition, feature extraction and state recognition. First of all, select reasonable vibration sensor and signal acquisition equipment, design and build the circuit breaker vibration signal acquisition system platform, collect high-voltage circuit breaker vibration signals in different mechanical states. Secondly, in view of the non-stationary and nonlinear characteristics of the vibration signals of high voltage circuit breakers, the variational mode decomposition is used to process the vibration signals of the circuit breakers by time-frequency decomposition, and the corresponding eigenmode functions are obtained. Then the modal function matrix is divided into several submatrices to calculate the local singular value of the matrix and the maximum singular value of each submatrix is selected as the eigenvector of fault diagnosis. Finally, a multi-layer classifier combined with single-class classifier and multi-class classifier is constructed. Two independent single-class support vector machines are used to accurately distinguish the normal and fault states of HV circuit breakers, known fault types and unknown fault types, respectively. On this basis, support vector machine (SVM) is used to identify the specific fault types of known faults. An example diagnosis test of SF6 high voltage circuit breaker under normal and three typical faults is carried out. The experimental results show that variational mode decomposition and local singular value decomposition can accurately extract the fault characteristics of the circuit breaker. The application of single-class classifier to mechanical fault diagnosis of high voltage circuit breakers can effectively improve the accuracy of fault identification, thus improving the reliability of fault diagnosis, and has a higher engineering application value.
【学位授予单位】:东北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM561
【参考文献】
相关期刊论文 前10条
1 武英杰;甄成刚;刘长良;;变分模态分解在风电机组故障诊断中的应用[J];机械传动;2015年10期
2 刘长良;武英杰;甄成刚;;基于变分模态分解和模糊C均值聚类的滚动轴承故障诊断[J];中国电机工程学报;2015年13期
3 唐贵基;王晓龙;;参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J];西安交通大学学报;2015年05期
4 缪希仁;吴晓梅;石敦义;郭谋发;王吴雨;;采用HHT振动分析的低压断路器合闸同期辨识[J];电工技术学报;2014年11期
5 郭谋发;徐丽兰;缪希仁;陈立纯;;采用时频矩阵奇异值分解的配电开关振动信号特征量提取方法[J];中国电机工程学报;2014年28期
6 孙一航;武建文;廉世军;张路明;;结合经验模态分解能量总量法的断路器振动信号特征向量提取[J];电工技术学报;2014年03期
7 梅飞;梅军;郑建勇;张思宇;朱克东;;粒子群优化的KFCM及SVM诊断模型在断路器故障诊断中的应用[J];中国电机工程学报;2013年36期
8 常广;王毅;王玮;;采用振动信号零相位滤波时频熵的高压断路器机械故障诊断[J];中国电机工程学报;2013年03期
9 徐建源;张彬;林莘;李斌;腾云;;能谱熵向量法及粒子群优化的RBF神经网络在高压断路器机械故障诊断中的应用[J];高电压技术;2012年06期
10 黄南天;徐殿国;刘晓胜;林琳;;基于模式相似性测度的电能质量数据压缩方法[J];电工技术学报;2011年10期
相关博士学位论文 前1条
1 董越;SF_6高压断路器在线监测及振动信号的分析[D];上海交通大学;2008年
相关硕士学位论文 前1条
1 张佩;高压断路器机械故障诊断方法的研究[D];华北电力大学;2014年
,本文编号:2339467
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2339467.html