当前位置:主页 > 科技论文 > 电气论文 >

220kV节能变压器研究

发布时间:2018-11-27 13:45
【摘要】:随着我国社会经济的发展,电力的需求不断增加,变压器作为电力系统的主要设备,降低损耗,提高运行的经济型、可靠性和安全性变得尤为重要。本文从变压器的基本原理出发,分析了变压器损耗产生的原因,研究了降低变压器空载损耗和负载损耗的具体措施,探讨了不同工艺对变压器损耗的影响,在此基础上设计了 SSZ-240000/220节能型电力变压器,仿真分析变压器的基本性能,并通过样机试验验证了节能变压器的安全性经济性及节能措施的有效性。本文首先从空载损耗和负载损耗对变压器的损耗进行了理论计算。分析了变压器的空载损耗,磁滞损耗,涡流损耗,铁心附加损耗产生的原因,并给出了计算的经验公式;对于变压器的负载损耗,按电阻损耗,涡流损耗,环流损耗和结构件杂散损耗四部分,分别进行了分析计算,根据分析计算的结果,给出了理论上减少变压器损耗的措施。进而,在理论计算的基础上,分析了降低变压器空载和负载损耗的具体措施。在变压器结构方面研究了卷铁心三相四框五柱铁心结构在降低损耗上的优势,并给出了变压器铁心主轭与旁轭截面积优化的思路。为了减少铁心损耗,本文通过多种硅钢片的比对试验,研究了优质高导磁取向硅钢片和非晶合金材料的优缺点。对于变压器的工艺技术,主要比较了直接接缝与斜接缝,阶梯叠与交错叠四种加工工艺并通过仿真分析比较了他们的差异。对于变压器的铜耗,研究了改进导线材料和进行合理换相两种方式,给出了最佳换相策略。为了验证理论分析的正确性,设计了 SSZ-240000/220节能型电力变压器样机。通过仿真变压器的主绝缘磁场、漏磁场、承受短路的能力和绕组温度场,结果显示节能变压器的主磁场和漏磁场分布优于传统变压器,绕组温升小于传统变压器,说明变压器的铜耗、铁耗都有所降低,验证了变压器的安全性和经济性以及节能措施的有效性。为了验证变压器基本性能,设计了电压比测量及联结组标号检定、外施耐压试验、操作波冲击试验、雷电冲击试验、长时感应电压试验、声级测量试验、绕组电阻测量试验,绕组对地绝缘电阻和介质损耗因数的测量试验等,空载电流和空载损耗测量试验、短路阻抗和负载损耗测量试验,测量变压器的空载损耗和负载损耗以及变压器的主要技术参数,结果显示变压器基本性能满足设计要求,空载损耗和负载损耗较传统变压器明显降低,达到了安全、可靠、经济的目标,为节能变压器进一步的深入研究提供了参考。
[Abstract]:With the development of society and economy in our country, the demand of electric power is increasing. As the main equipment of power system, it is very important for transformer to reduce the loss, improve the economical type, reliability and safety. Based on the basic principle of transformer, this paper analyzes the causes of transformer loss, studies the concrete measures to reduce the no-load loss and load loss of transformer, and discusses the influence of different processes on transformer loss. On this basis, the SSZ-240000/220 energy-saving power transformer is designed, the basic performance of the transformer is simulated and analyzed, and the safety and economy of the energy-saving transformer and the effectiveness of the energy-saving measures are verified by the prototype test. In this paper, the loss of transformer is calculated theoretically from load loss and no load loss. The causes of no-load loss, hysteresis loss, eddy current loss and core additional loss of transformers are analyzed, and the empirical formulas for calculation are given. The load loss of transformer is analyzed and calculated according to four parts: resistance loss, eddy current loss, circulation loss and stray loss of structural parts. According to the results of analysis and calculation, the measures to reduce transformer losses are given in theory. Then, on the basis of theoretical calculation, the concrete measures to reduce the no-load and load loss of transformer are analyzed. In the aspect of transformer structure, the advantages of three-phase four-frame five-column core structure in reducing loss are studied, and the idea of optimizing the cross-sectional area of transformer core yoke and side yoke is given. In order to reduce core loss, the merits and demerits of high quality and high magnetic conductivity oriented silicon steel and amorphous alloy were studied by comparison tests of various silicon steel sheets. For the transformer technology, the paper mainly compares the four processing technologies of direct joint and oblique joint, step stacking and staggered stack, and compares their differences through simulation analysis. For the copper consumption of transformer, two ways of improving conductor material and carrying out reasonable phase commutation are studied, and the optimal commutation strategy is given. In order to verify the correctness of the theoretical analysis, the prototype of SSZ-240000/220 power transformer is designed. By simulating the main insulation magnetic field, leakage magnetic field, the ability to bear short circuit and the winding temperature field, the results show that the distribution of main magnetic field and leakage magnetic field of energy-saving transformer is better than that of traditional transformer, and the temperature rise of winding is smaller than that of traditional transformer. The results show that the copper and iron consumption of transformers are reduced, and the safety and economy of transformers and the effectiveness of energy saving measures are verified. In order to verify the basic performance of the transformer, the measurement of the voltage ratio and the calibration of the connection group, the external voltage test, the operating wave impact test, the lightning shock test, the long time induction voltage test, the sound level measurement test, the winding resistance measurement test are designed. Measurement test of insulation resistance and dielectric loss factor of winding, measurement test of no-load current and no-load loss, measurement test of short-circuit impedance and load loss, The measurement of the no-load loss and load loss of transformer and the main technical parameters of transformer show that the basic performance of transformer meets the design requirements, the no-load loss and load loss are obviously lower than those of traditional transformer, and the transformer is safe and reliable. The economic goal provides a reference for the further study of energy-saving transformer.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM41

【参考文献】

相关期刊论文 前10条

1 佘立伟;王林青;邓杰文;;基于有限元法的三相五柱变压器直流偏磁研究[J];科技与创新;2016年06期

2 陈尔奎;吴林;陈煊之;孙建华;;立体卷铁心变压器铁心参数计算[J];变压器;2016年03期

3 张宗有;何晓峰;赵永霞;;铁心电抗器绕组涡流损耗的计算[J];电力电容器与无功补偿;2015年06期

4 蒋发伦;;节能变压器用非晶合金的改性研究[J];热加工工艺;2014年22期

5 龚宇;崔巍;章跃进;;考虑局部磁滞损耗的复合电机铁损耗计算[J];中国电机工程学报;2014年30期

6 陈尔奎;姜文建;李锦川;;立体卷铁心变压器铁心尺寸与损耗计算[J];变压器;2013年11期

7 程鹏;杨永明;庄晓芸;杨帆;李春莉;何为;;立体卷铁心干式变压器三维温度场计算与分析[J];变压器;2013年09期

8 董霞;刘志珍;;三相变压器直流偏磁仿真分析[J];电力自动化设备;2013年07期

9 郑黎明;尹华杰;;立体卷铁心变压器铁心柱截面的优化设计[J];变压器;2013年02期

10 侯忠平;陈开全;胡晶金;;非晶合金变压器与硅钢片铁心变压器运行参数比较[J];机电工程技术;2012年02期

相关博士学位论文 前1条

1 陈敏;高温超导变压器中电磁问题的研究[D];中国科学院研究生院(电工研究所);2004年

相关硕士学位论文 前3条

1 高凌祥;变压器直流偏磁仿真分析及其抑制[D];西南交通大学;2016年

2 张师赫;变压器直流偏磁现象研究[D];西安科技大学;2015年

3 万宗顺;新型节能配电变压器卷铁芯制造关键技术研究[D];东华大学;2006年



本文编号:2360987

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2360987.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户cb4bb***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com