当前位置:主页 > 科技论文 > 电气论文 >

基于灰色理论的油浸式电力变压器故障诊断研究

发布时间:2018-12-06 14:49
【摘要】:电力变压器是电网最重要的电能分配与传输设备,同时也是整个变电站、配电站的核心设备。变压器的安全、可靠运行是变配电站乃至整个电力系统安全,优质,经济,可靠运行的重要保证,因此对其进行故障诊断及预测具有十分重要的现实与理论意义。油中溶解气体分析(DGA)为电网对变压器使用的重要故障诊断方法,当油浸式变压器发生故障后,将产生相应的特征气体,其成分与含量可以反映电力变压器矿物绝缘油的状态及其劣化度,从而反映电力变压器的实际运行状况。对电力变压器油中溶解特征气体的成分及其增长速率进行诊断能够及时发现变压器内部存在的潜伏性故障,预测变压器的运行状态并分析预测结果,提前判断是否发生故障,并据此采取相应的防护措施,从而保证变压器的可靠运行,同时DGA不受外部电磁场的干扰,因此是电力设备实现状态检修的一个重要技术。本文通过将电力变压器DGA与灰色系统理论相结合建立了基于灰关联的油浸式电力变压器故障诊断模型,同时结合区间估计法建立了油浸式电力变压器油中溶解气体含量的区间预测模型,克服了仅预测单一值的不足。其次应用MATLAB编制了电力变压器故障诊断软件,主要包括了基于IEC三比值的电力变压器故障诊断、基于灰关联的电力变压器故障诊断与基于灰色理论的电力变压器油中溶解气体区间预测三个功能模块。最后通过诊断实例分析和实际的故障原因的检查对比分析,得出基于灰色理论的电力变压器故障诊断模型与油中溶解气体区间预测模型可以较好的实现变压器的故障分析。
[Abstract]:The power transformer is the most important power distribution and transmission equipment of the power grid, and is also the core equipment of the whole substation and the power distribution station. The safe and reliable operation of the transformer is an important guarantee for the safe, high-quality, economical and reliable operation of the power transformer substation and the whole power system. Therefore, it is very important to fault diagnosis and prediction. The analysis of dissolved gas in oil (DGA) is an important fault diagnosis method used by the power grid to the transformer. When the oil-immersed transformer fails, the corresponding characteristic gas will be generated, and its composition and content can reflect the state and the deterioration degree of the mineral insulating oil of the power transformer. so as to reflect the actual operation state of the power transformer. the component and the growth rate of the dissolved characteristic gas in the power transformer oil can be diagnosed, the latent fault existing in the transformer can be timely detected, the running state of the transformer is predicted, the prediction result is analyzed, the fault is judged in advance, and accordingly, corresponding protective measures are taken, so as to ensure the reliable operation of the transformer, and the DGA is not interfered by the external electromagnetic field and is therefore an important technology for realizing the state maintenance of the power equipment. In this paper, an oil-immersed power transformer fault diagnosis model based on gray correlation is established by combining the power transformer DGA and the grey system theory, and the interval prediction model of the dissolved gas content in the oil-immersed power transformer oil is established by combining the interval estimation method. the disadvantage of predicting only a single value is overcome. Secondly, the fault diagnosis software of the power transformer is developed by using MATLAB, which mainly includes the fault diagnosis of the power transformer based on the IEC three-ratio, the fault diagnosis of the power transformer based on the gray correlation and the three function modules for predicting the dissolved gas interval in the power transformer oil based on the grey theory. Finally, the fault analysis of the transformer can be realized by the analysis of the diagnosis case and the actual fault reason. The fault diagnosis model of the power transformer and the gas interval prediction model of the oil are obtained.
【学位授予单位】:河北科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM411

【参考文献】

相关期刊论文 前10条

1 薛浩然;张珂珩;李斌;彭晨辉;;基于布谷鸟算法和支持向量机的变压器故障诊断[J];电力系统保护与控制;2015年08期

2 毕建权;鹿鸣明;郭创新;王逸飞;刘潇洋;;一种基于多分类概率输出的变压器故障诊断方法[J];电力系统自动化;2015年05期

3 谢龙君;李黎;程勇;卢明;姜立秋;腾云;;融合集对分析和关联规则的变压器故障诊断方法[J];中国电机工程学报;2015年02期

4 郝慧;;电力系统变压器的常见故障分析[J];科技资讯;2011年15期

5 杨廷方;刘沛;李浙;曾祥君;;应用新型多方法组合预测模型估计变压器油中溶解气体浓度[J];中国电机工程学报;2008年31期

6 肖燕彩;陈秀海;朱衡君;;遗传支持向量机在电力变压器故障诊断中的应用[J];上海交通大学学报;2007年11期

7 董明,屈彦明,周孟戈,严璋;基于组合决策树的油浸式电力变压器故障诊断[J];中国电机工程学报;2005年16期

8 许启发,张世英;Box-Cox-SV模型及其对金融时间序列刻画能力研究[J];系统工程学报;2005年04期

9 李峥,马宏忠;电力变压器故障诊断的可拓集法[J];电力自动化设备;2004年11期

10 刘思峰;灰色系统理论的产生与发展[J];南京航空航天大学学报;2004年02期

相关硕士学位论文 前1条

1 曹国慧;基于油中气体分析的多种人工智能技术在变压器故障诊断中的应用[D];郑州大学;2004年



本文编号:2366204

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2366204.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户14d55***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com