基于改进蝙蝠算法的PSS参数优化研究
[Abstract]:With the increasing expansion of power network scale and the use of fast excitation system with high magnification in large generator sets, low frequency oscillation is often produced in power system, which usually weakens the damping of the system. It has a great influence on the dynamic stability of power system. Therefore, low frequency oscillation has become an important factor restricting the further development of power system. As an additional device, PSS (Power system stabilizer, is widely used to suppress low frequency oscillation. PSS is used to control the excitation of generator to improve the damping of local mode oscillation. It is proved that the damping of local and interval oscillations can be improved by reasonable tuning of PSS parameters. However, because of the negative damping effect of PSS in multi-machine systems, the configuration of PSS parameters is a multi-parameter coordination optimization problem in multi-machine systems. In order to suppress the low frequency oscillation in the multi-machine power system when the fault occurs, this paper presents a IBA algorithm (Improved Bat Algorithm, which harmonizes the optimization of PSS parameters, based on the analysis of the shortcomings of the current common algorithms for optimizing PSS parameters. The improved bat algorithm). BA (Bat Algorithm, bat algorithm) is a new intelligent optimization algorithm which combines global search with local search. It has high precision and efficiency through mathematical processing of the echolocation behavior of bats. It has been applied to solve various complex functions and multi-objective optimization, and has also been applied to many engineering problems. By comparing and analyzing the current analysis methods of low frequency oscillation, a kind of Prony algorithm is determined, and a simulation example is used to verify the validity of the method used in the analysis of low frequency oscillation. Therefore, Prony algorithm is used to identify the electromechanical mode of the low frequency oscillation of the system, and the index to measure the damping performance of the system is calculated, and the purpose of this optimization is to maximize the damping ratio of the system. The IBA algorithm is used to coordinate and optimize the PSS parameters. Finally, the rationality of the algorithm is proved by the examples of single-machine infinite bus system and four-machine two-region system. The results show that the IBA algorithm can be applied to the parameter optimization of damping controller under various operation modes, and has good robustness, and can effectively suppress the low frequency oscillation. In addition, by comparing the optimization results of PSS parameters based on IBA algorithm, PSO algorithm and basic BA algorithm in multi-machine power system, we can see that the PSS based on IBA algorithm has the best effect in suppressing low frequency oscillation. The stability of power system is improved significantly and the algorithm overcomes the shortcomings of the basic BA algorithm which is easy to fall into local optimum and slow in the later stage of convergence.
【学位授予单位】:兰州交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM712
【参考文献】
相关期刊论文 前10条
1 武海南;李杰;;基于改进型遗传算法的PSS系统参数整定及应用[J];浙江电力;2016年06期
2 翟云峰;蒋云峰;易国伟;潘浩;代希雷;;基于改进蝙蝠算法的微电网优化调度[J];电力建设;2015年06期
3 刘元苗;高晓智;;基于蝙蝠算法的改进杂草算法研究[J];微型机与应用;2015年03期
4 王文;王勇;王晓伟;;一种具有记忆特征的改进蝙蝠算法[J];计算机应用与软件;2014年11期
5 刘文颖;谢昶;文晶;王佳明;王维洲;;基于小生境多目标粒子群算法的输电网检修计划优化[J];中国电机工程学报;2013年04期
6 杨燕;郭文鑫;林振智;吴丹岳;黄霆;杨桂钟;文福拴;;基于和声搜索算法的多机系统PSS参数协调优化[J];华北电力大学学报(自然科学版);2010年04期
7 吴峰;鲁晓帆;陈维荣;郑永康;;电力系统稳定器参数优化的研究[J];电力系统保护与控制;2010年05期
8 廖晓昕;;漫谈Lyapunov稳定性的理论、方法和应用[J];南京信息工程大学学报(自然科学版);2009年01期
9 吴峰;陈维荣;李奇;鲁晓帆;;基于粒子群优化算法的PSS参数优化[J];电力系统保护与控制;2009年10期
10 郭成;李群湛;王德林;;基于Prony和改进PSO算法的多机PSS参数优化[J];电力自动化设备;2009年03期
相关博士学位论文 前1条
1 吴复霞;电力系统低频振荡的分析和控制[D];浙江大学;2007年
相关硕士学位论文 前4条
1 李尊;基于蝙蝠算法的Criminisi图像修复算法[D];武汉科技大学;2015年
2 侯莉;基于粒子交叉融合算法的PSS参数优化研究[D];兰州交通大学;2012年
3 简华阳;基于自适应混沌粒子群算法的电力系统稳定器参数优化[D];重庆大学;2011年
4 刘国平;基于Prony法的电力系统低频振荡分析与控制[D];浙江大学;2004年
,本文编号:2370305
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2370305.html