当前位置:主页 > 科技论文 > 电气论文 >

一维纳米材料网格结构透明超级电容器的研究

发布时间:2018-12-11 19:39
【摘要】:伴随着透明电子设备的快速发展,透明电池和超级电容器引起了广泛的研究兴趣。然而透明能源设备的制备面临着巨大的挑战。它要求所涉及到的组成部分包括集流体、电极材料、隔膜以及电解质都应具有透明的性能。虽然有些全透明超级电容器可以使用H3P04(或H2SO4)/PVA (聚乙烯醇)凝胶作为电解质和隔膜,但是由于凝胶具有流变性能和易变型特征,使得夹在两个电极之间的这些凝胶电解质膜的厚度难以控制,进而导致难以重复制造出具有良好稳定性的超级电容器。为了控制两电极之间的间距,一些装置选用不透明的商业隔膜(如Celgard微孔膜),忽略了制备透明器件的初始意图。因此,研究开发出具有稳定结构和兼容性的隔膜对于透明能量储存装置极其重要。本论文中提出将聚苯乙烯(PS)微球作为电极间隔材料,与凝胶电解质混合替代传统的隔膜如聚丙烯、纤维素隔膜纸。在此基础上,分别以碳纳米管(CNTs)和氧化铟锡(ITO)玻璃作为活性材料和集流体,制备透明超级电容器,主要进展如下:1 .将单壁碳纳米管(SWCNT)负载在ITO/玻璃上制作透明电极,以LiCl/PVA溶胶为电解质,PS球作为电极间隔物制备透明超级电容器。通过改变PS求粒径(10、20、40微米)调控电极间距;改变SWCNT的覆盖量调控电极的透光度。实验结果表明粒径20微米PS球所构建的透明超级电容器性能最好。全器件的透光度为80.8%时,其面积比电容达到66μF/cm2,库伦效率超过92%。2.为了进一步提高超级电容器的比电容,我们以二氧化锰修饰的多壁碳纳米管(Mn02/MWCNT)作为复合电极材料制备透明超级电容器。与纯MWCNT电极的器件相比,Mn02/MWCNT透明超级电容器的比电容提高了一个数量级。同样的,Mn02/MWCNT的沉积量决定者电极的透光性和超级电容器的容量。其中当器件的透光度在78.9%时,比电容达到了 678μF/cm2,在1000次充放电循环后其容量仍保持在88.6%。3.用柔性透明的金纳米网格/PET或ITO/PET替代刚性的ITO玻璃作为集流体,构建全固态柔性透明超级电容器。该柔性透明超级电容器展现出了良好的电化学性能,透光度在48%时,比电容达到952.5 μF/cm2,充放电循环1000圈以后比电容依然能保持原来的87.4%。同时,在不同的弯曲度下(0°、45°、90°、135°、180°)依然有很好的电化学性能,弯折180°之后其比电容保持在原值的80%左右,说明该电容具有良好的柔韧性。
[Abstract]:With the rapid development of transparent electronic devices, transparent batteries and supercapacitors have attracted extensive research interest. However, the preparation of transparent energy equipment faces great challenges. It requires that the components involved include fluid collection, electrode materials, membranes, and electrolytes with transparent properties. Although some fully transparent supercapacitors can use H3P04 (or H2SO4) / PVA (polyvinyl alcohol) gels as electrolytes and membranes, due to their rheological properties and variability, It is difficult to control the thickness of these gel electrolyte membranes between the two electrodes, which makes it difficult to repeatedly produce supercapacitors with good stability. In order to control the distance between the two electrodes, some devices choose opaque commercial diaphragm (such as Celgard microporous membrane), neglecting the initial intention of fabricating transparent devices. Therefore, it is very important to develop a stable structure and compatible diaphragm for transparent energy storage devices. In this paper, polystyrene (PS) microspheres are used as electrode spacers to replace traditional membranes such as polypropylene and cellulose membrane paper. On this basis, transparent supercapacitors were prepared by using carbon nanotube (CNTs) and indium tin oxide (ITO) glass as active materials and collecting fluid, respectively. The main progress is as follows: 1. Single walled carbon nanotubes (SWCNT) were loaded on ITO/ glass to make transparent electrodes. Transparent supercapacitors were prepared by using LiCl/PVA sol as electrolyte and PS ball as electrode spacer. By changing the particle size of PS (10 ~ 20 ~ 40 渭 m), the distance between electrodes is regulated, and the transmittance of the electrode is regulated by changing the coverage of SWCNT. The experimental results show that the transparent supercapacitor with 20 micron diameter PS ball has the best performance. When the transmittance of the whole device is 80.8, its area specific capacitance reaches 66 渭 F / cm ~ 2, and the Coulomb efficiency exceeds 922.2. In order to further improve the specific capacitance of supercapacitors, transparent supercapacitors were prepared using manganese dioxide modified multi-walled carbon nanotubes (Mn02/MWCNT) as composite electrode materials. Compared with the pure MWCNT electrode, the specific capacitance of the Mn02/MWCNT transparent supercapacitor is increased by an order of magnitude. Similarly, the amount of Mn02/MWCNT deposition determines the transmittance of the electrode and the capacity of the supercapacitor. When the transmittance of the device is 78.9, the specific capacitance reaches 678 渭 F / cm ~ 2, and its capacity remains at 88.60.3after 1000 charge-discharge cycles. Flexible transparent gold mesh / PET or ITO/PET instead of rigid ITO glass was used as a fluid collector to construct all-solid-state flexible transparent supercapacitors. The flexible transparent supercapacitor shows good electrochemical performance. The specific capacitance reaches 952.5 渭 F / cm ~ 2 at 48 渭 F / cm ~ (2), and the specific capacitance can still keep 87.4% after 1000 cycles of charge and discharge cycle. At the same time, at different bending degrees (0 掳, 45 掳, 90 掳, 135 掳, 180 掳), the electrochemical performance is still very good. After bending 180 掳, the specific capacitance remains about 80% of the original value, which indicates that the capacitance has good flexibility.
【学位授予单位】:南京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM53;TB383.1

【相似文献】

相关期刊论文 前10条

1 陈新丽;李伟善;;超级电容器电极材料的研究现状与发展[J];广东化工;2006年07期

2 许开卿;吴季怀;范乐庆;冷晴;钟欣;兰章;黄妙良;林建明;;水凝胶聚合物电解质超级电容器研究进展[J];材料导报;2011年15期

3 梓文;;超高能超级电容器[J];兵器材料科学与工程;2013年04期

4 ;欧盟创新型大功率超级电容器问世[J];功能材料信息;2014年01期

5 周霞芳;;无污染 充电快 春节后有望面市 周国泰院士解密“超级电容器”[J];环境与生活;2012年01期

6 江奇,瞿美臻,张伯兰,于作龙;电化学超级电容器电极材料的研究进展[J];无机材料学报;2002年04期

7 朱修锋,王君,景晓燕,张密林;超级电容器电极材料[J];化工新型材料;2002年04期

8 景茂祥,沈湘黔,沈裕军,邓春明,翟海军;超级电容器氧化物电极材料的研究进展[J];矿冶工程;2003年02期

9 朱磊,吴伯荣,陈晖,刘明义,简旭宇,李志强;超级电容器研究及其应用[J];稀有金属;2003年03期

10 贺福;碳(炭)材料与超级电容器[J];高科技纤维与应用;2005年03期

相关会议论文 前10条

1 马衍伟;张熊;余鹏;陈尧;;新型超级电容器纳米电极材料的研究[A];2009中国功能材料科技与产业高层论坛论文集[C];2009年

2 张易宁;何腾云;;超级电容器电极材料的最新研究进展[A];第二十八届全国化学与物理电源学术年会论文集[C];2009年

3 钟辉;曾庆聪;吴丁财;符若文;;聚苯乙烯基层次孔碳的活化及其在超级电容器中的应用[A];中国化学会第15届反应性高分子学术讨论会论文摘要预印集[C];2010年

4 赵家昌;赖春艳;戴扬;解晶莹;;扣式超级电容器组的研制[A];第十二届中国固态离子学学术会议论文集[C];2004年

5 单既成;陈维英;;超级电容器与通信备用电源[A];通信电源新技术论坛——2008通信电源学术研讨会论文集[C];2008年

6 王燕;吴英鹏;黄毅;马延风;陈永胜;;单层石墨用作超级电容器的研究[A];2009年全国高分子学术论文报告会论文摘要集(上册)[C];2009年

7 赵健伟;倪文彬;王登超;黄忠杰;;超级电容器电极材料的设计、制备及性质研究[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年

8 张琦;郑明森;董全峰;田昭武;;基于薄液层反应的新型超级电容器——多孔碳电极材料的影响[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年

9 马衍伟;;新型超级电容器石墨烯电极材料的研究[A];第七届中国功能材料及其应用学术会议论文集(第7分册)[C];2010年

10 刘不厌;彭乔;孙s,

本文编号:2373112


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2373112.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8a7b0***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com