一维纳米材料网格结构透明超级电容器的研究
[Abstract]:With the rapid development of transparent electronic devices, transparent batteries and supercapacitors have attracted extensive research interest. However, the preparation of transparent energy equipment faces great challenges. It requires that the components involved include fluid collection, electrode materials, membranes, and electrolytes with transparent properties. Although some fully transparent supercapacitors can use H3P04 (or H2SO4) / PVA (polyvinyl alcohol) gels as electrolytes and membranes, due to their rheological properties and variability, It is difficult to control the thickness of these gel electrolyte membranes between the two electrodes, which makes it difficult to repeatedly produce supercapacitors with good stability. In order to control the distance between the two electrodes, some devices choose opaque commercial diaphragm (such as Celgard microporous membrane), neglecting the initial intention of fabricating transparent devices. Therefore, it is very important to develop a stable structure and compatible diaphragm for transparent energy storage devices. In this paper, polystyrene (PS) microspheres are used as electrode spacers to replace traditional membranes such as polypropylene and cellulose membrane paper. On this basis, transparent supercapacitors were prepared by using carbon nanotube (CNTs) and indium tin oxide (ITO) glass as active materials and collecting fluid, respectively. The main progress is as follows: 1. Single walled carbon nanotubes (SWCNT) were loaded on ITO/ glass to make transparent electrodes. Transparent supercapacitors were prepared by using LiCl/PVA sol as electrolyte and PS ball as electrode spacer. By changing the particle size of PS (10 ~ 20 ~ 40 渭 m), the distance between electrodes is regulated, and the transmittance of the electrode is regulated by changing the coverage of SWCNT. The experimental results show that the transparent supercapacitor with 20 micron diameter PS ball has the best performance. When the transmittance of the whole device is 80.8, its area specific capacitance reaches 66 渭 F / cm ~ 2, and the Coulomb efficiency exceeds 922.2. In order to further improve the specific capacitance of supercapacitors, transparent supercapacitors were prepared using manganese dioxide modified multi-walled carbon nanotubes (Mn02/MWCNT) as composite electrode materials. Compared with the pure MWCNT electrode, the specific capacitance of the Mn02/MWCNT transparent supercapacitor is increased by an order of magnitude. Similarly, the amount of Mn02/MWCNT deposition determines the transmittance of the electrode and the capacity of the supercapacitor. When the transmittance of the device is 78.9, the specific capacitance reaches 678 渭 F / cm ~ 2, and its capacity remains at 88.60.3after 1000 charge-discharge cycles. Flexible transparent gold mesh / PET or ITO/PET instead of rigid ITO glass was used as a fluid collector to construct all-solid-state flexible transparent supercapacitors. The flexible transparent supercapacitor shows good electrochemical performance. The specific capacitance reaches 952.5 渭 F / cm ~ 2 at 48 渭 F / cm ~ (2), and the specific capacitance can still keep 87.4% after 1000 cycles of charge and discharge cycle. At the same time, at different bending degrees (0 掳, 45 掳, 90 掳, 135 掳, 180 掳), the electrochemical performance is still very good. After bending 180 掳, the specific capacitance remains about 80% of the original value, which indicates that the capacitance has good flexibility.
【学位授予单位】:南京邮电大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM53;TB383.1
【相似文献】
相关期刊论文 前10条
1 陈新丽;李伟善;;超级电容器电极材料的研究现状与发展[J];广东化工;2006年07期
2 许开卿;吴季怀;范乐庆;冷晴;钟欣;兰章;黄妙良;林建明;;水凝胶聚合物电解质超级电容器研究进展[J];材料导报;2011年15期
3 梓文;;超高能超级电容器[J];兵器材料科学与工程;2013年04期
4 ;欧盟创新型大功率超级电容器问世[J];功能材料信息;2014年01期
5 周霞芳;;无污染 充电快 春节后有望面市 周国泰院士解密“超级电容器”[J];环境与生活;2012年01期
6 江奇,瞿美臻,张伯兰,于作龙;电化学超级电容器电极材料的研究进展[J];无机材料学报;2002年04期
7 朱修锋,王君,景晓燕,张密林;超级电容器电极材料[J];化工新型材料;2002年04期
8 景茂祥,沈湘黔,沈裕军,邓春明,翟海军;超级电容器氧化物电极材料的研究进展[J];矿冶工程;2003年02期
9 朱磊,吴伯荣,陈晖,刘明义,简旭宇,李志强;超级电容器研究及其应用[J];稀有金属;2003年03期
10 贺福;碳(炭)材料与超级电容器[J];高科技纤维与应用;2005年03期
相关会议论文 前10条
1 马衍伟;张熊;余鹏;陈尧;;新型超级电容器纳米电极材料的研究[A];2009中国功能材料科技与产业高层论坛论文集[C];2009年
2 张易宁;何腾云;;超级电容器电极材料的最新研究进展[A];第二十八届全国化学与物理电源学术年会论文集[C];2009年
3 钟辉;曾庆聪;吴丁财;符若文;;聚苯乙烯基层次孔碳的活化及其在超级电容器中的应用[A];中国化学会第15届反应性高分子学术讨论会论文摘要预印集[C];2010年
4 赵家昌;赖春艳;戴扬;解晶莹;;扣式超级电容器组的研制[A];第十二届中国固态离子学学术会议论文集[C];2004年
5 单既成;陈维英;;超级电容器与通信备用电源[A];通信电源新技术论坛——2008通信电源学术研讨会论文集[C];2008年
6 王燕;吴英鹏;黄毅;马延风;陈永胜;;单层石墨用作超级电容器的研究[A];2009年全国高分子学术论文报告会论文摘要集(上册)[C];2009年
7 赵健伟;倪文彬;王登超;黄忠杰;;超级电容器电极材料的设计、制备及性质研究[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年
8 张琦;郑明森;董全峰;田昭武;;基于薄液层反应的新型超级电容器——多孔碳电极材料的影响[A];中国化学会第27届学术年会第10分会场摘要集[C];2010年
9 马衍伟;;新型超级电容器石墨烯电极材料的研究[A];第七届中国功能材料及其应用学术会议论文集(第7分册)[C];2010年
10 刘不厌;彭乔;孙s,
本文编号:2373112
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2373112.html