基于阻尼转矩理论的PSS设计与控制
发布时间:2018-12-12 13:19
【摘要】:本文详细地介绍了电力系统阻尼转矩理论。基于此理论,可以用协同设计法对PSS进行设计。常见的协同设计方法是将设计问题转换成对一个目标函数进行参数寻优的过程。这样PSS的参数的设置就可以通过在PSS的参数空间上对目标函数进行寻优来完成。本文提出了一种简单的协同设计方法。在多机电力系统中对M台PSS进行协同设计时,在参数空间上对维数进行简化。寻优过程是在M维参数空间中进行,寻找最优解的效率也随着参数空间维数的简化而提高。本文提出的寻优方法分为两个步骤。首先,在多机系统中计算一台PSS向所有同步发电机提供的阻尼转矩,设置每一台PSS参数,使其能够向目标机电振荡模式提供最大的阻尼。文中证明了这种设置方法可以使得PSS提供阻尼的方式最为高效。所有PSS的参数都按照一定的顺序进行设置。接着,通过参数优化的方法对所有PSS的增益进行设计。在对M台PSS的寻优是在M维参数空间下进行。文中通过了一个多机系统的算例对这种方法的正确性进行了解释和验证。为了更深入地解释这种协同设计方法,测试并比较了不同形式下的常用目标函数。本文还在三维图形上表示出其集合,并且在这些图形当中,可以找到使得增益和最小的一个组合。对于目标函数的讨论能够有助于对寻优和目标函数之间的关系有更深入的认识。为了克服PSS参数优化的非线性、多极值的特点,最后介绍了一种智能优化算法——鱼群算法对PSS参数进行优化,并在含有装有阻尼控制器的UPFC和PSS的江苏电网以及一个四机两区域的系统中进行了算例验证。最后对比并分析了UPFC上的阻尼控制器和发电机上的PSS对振荡模式的影响,发现UPFC上的阻尼控制器对振荡模式的影响很小。因此,将UPFC上的阻尼控制器去掉,重新设计PSS上的参数,并且根据设计的结果,在BPA中对系统进行仿真。结果表明,这种设计方法能够有效地提高系统的稳定性。
[Abstract]:In this paper, the damping torque theory of power system is introduced in detail. Based on this theory, PSS can be designed by collaborative design method. The common collaborative design method is to transform the design problem into the process of parameter optimization for an objective function. In this way, the parameters of PSS can be set by optimizing the objective function in the parameter space of PSS. A simple collaborative design method is presented in this paper. In the collaborative design of M PSS in multi-machine power system, the dimension is simplified in parameter space. The optimization process is carried out in the M-dimensional parameter space, and the efficiency of finding the optimal solution increases with the simplification of the dimension of the parameter space. The optimization method proposed in this paper is divided into two steps. First, the damping torque provided by a PSS to all synchronous generators is calculated in a multi-machine system, and each PSS parameter is set to provide maximum damping to the target electromechanical oscillation mode. This method is proved to be the most efficient way for PSS to provide damping. All PSS parameters are set in a certain order. Then, the gain of all PSS is designed by the method of parameter optimization. The optimization of M-station PSS is carried out in M-dimensional parameter space. The correctness of this method is explained and verified by a multi-machine system. In order to explain the cooperative design method more deeply, the common objective functions in different forms are tested and compared. In this paper, we also show the set on 3D graphics, and in these graphs, we can find a combination of gain and minimum. The discussion of objective function can help us to understand the relationship between optimization and objective function. In order to overcome the nonlinear and multi-extremum characteristics of PSS parameter optimization, an intelligent optimization algorithm, fish swarm algorithm, is introduced to optimize PSS parameters. An example is given in Jiangsu Power Grid with UPFC and PSS with damping controller and a four-machine and two-area system. Finally, the effects of damping controller on UPFC and PSS on generator on oscillation mode are compared and analyzed. It is found that the damping controller on UPFC has little effect on oscillation mode. Therefore, the damping controller on UPFC is removed and the parameters on PSS are redesigned. According to the design results, the system is simulated in BPA. The results show that this design method can effectively improve the stability of the system.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM712
本文编号:2374638
[Abstract]:In this paper, the damping torque theory of power system is introduced in detail. Based on this theory, PSS can be designed by collaborative design method. The common collaborative design method is to transform the design problem into the process of parameter optimization for an objective function. In this way, the parameters of PSS can be set by optimizing the objective function in the parameter space of PSS. A simple collaborative design method is presented in this paper. In the collaborative design of M PSS in multi-machine power system, the dimension is simplified in parameter space. The optimization process is carried out in the M-dimensional parameter space, and the efficiency of finding the optimal solution increases with the simplification of the dimension of the parameter space. The optimization method proposed in this paper is divided into two steps. First, the damping torque provided by a PSS to all synchronous generators is calculated in a multi-machine system, and each PSS parameter is set to provide maximum damping to the target electromechanical oscillation mode. This method is proved to be the most efficient way for PSS to provide damping. All PSS parameters are set in a certain order. Then, the gain of all PSS is designed by the method of parameter optimization. The optimization of M-station PSS is carried out in M-dimensional parameter space. The correctness of this method is explained and verified by a multi-machine system. In order to explain the cooperative design method more deeply, the common objective functions in different forms are tested and compared. In this paper, we also show the set on 3D graphics, and in these graphs, we can find a combination of gain and minimum. The discussion of objective function can help us to understand the relationship between optimization and objective function. In order to overcome the nonlinear and multi-extremum characteristics of PSS parameter optimization, an intelligent optimization algorithm, fish swarm algorithm, is introduced to optimize PSS parameters. An example is given in Jiangsu Power Grid with UPFC and PSS with damping controller and a four-machine and two-area system. Finally, the effects of damping controller on UPFC and PSS on generator on oscillation mode are compared and analyzed. It is found that the damping controller on UPFC has little effect on oscillation mode. Therefore, the damping controller on UPFC is removed and the parameters on PSS are redesigned. According to the design results, the system is simulated in BPA. The results show that this design method can effectively improve the stability of the system.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM712
【参考文献】
相关期刊论文 前10条
1 祁桂刚;黎灿兵;曹一家;李欣然;周炼;曾龙;;SVC和TCSC控制器间动态交互影响分析[J];电力自动化设备;2014年07期
2 胡晓波;杨利民;陈中;王海风;唐国庆;;基于人工鱼群算法的PSS参数优化[J];电力自动化设备;2009年02期
3 王青;闵勇;张毅威;;电力系统低频振荡的机理研究和主要分析方法[J];电气应用;2006年07期
4 张剑,许镇琳,王天将;基于单神经元的参数自学习模糊控制器的研究[J];中小型电机;2005年02期
5 宁联辉,程时杰,文劲宇,彭晓涛;可控串补(TCSC)的自适应单神经元控制[J];继电器;2005年02期
6 李颖,贺仁睦;负荷与PSS的相互作用对系统动态稳定的影响[J];电力系统自动化;2004年08期
7 孙衢,徐光虎,陈陈;负荷模型动态特性不确定性对低频振荡的影响[J];电力系统自动化;2003年10期
8 杨琳,赵书强;H_∞电力系统稳定器的设计及其降阶[J];电力自动化设备;2003年03期
9 杨晓东,房大中,刘长胜,宋文南;阻尼联络线低频振荡的SVC自适应模糊控制器研究[J];中国电机工程学报;2003年01期
10 王铁强,贺仁睦,王卫国,徐东杰,魏立民,肖利民;电力系统低频振荡机理的研究[J];中国电机工程学报;2002年02期
,本文编号:2374638
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2374638.html