PMSM无位置传感器混合控制策略研究
[Abstract]:Permanent magnet synchronous motor (PMSM) is widely used in modern industrial society, especially in the field of electrical transmission. Vector control strategy is usually used for high performance PMSM drive. Real-time rotor position information is indispensable. The traditional position sensor will bring many problems. Using the position sensor control technology instead of the position sensor can reduce the cost of the control system, reduce the volume and weight, increase the power density, be more reliable and easy to install. Therefore, sensorless control technology has high research value. In this paper, the position sensorless control algorithm of PMSM is taken as the main research content, and the accurate observation of rotor position and speed can be realized in the whole speed range. A hybrid control strategy without position sensor is proposed. The control technology can be used in washing machines, air-conditioners and other household appliances, or in electric vehicle driving systems and other occasions. In the position sensorless hybrid control strategy proposed in this paper, the improved high frequency voltage injection method is used in the zero and low speed operation section, and the improved sliding mode observer method is used in the middle and high speed section. The complete implementation of the control strategy is given. In this paper, the improvement of the traditional high frequency voltage injection method mainly includes two aspects. One is to introduce the characteristic harmonic elimination method to replace the low-pass filter in the current feedback loop. It avoids the problems of phase lag and incomplete filtering brought by filter. Secondly, using phasor method to deduce the high frequency current carefully, considering the influence of armature winding resistance neglected in the traditional scheme, putting forward the corresponding compensation strategy, thus making the estimation of rotor position and speed more accurate. Thus, better dynamic and static control performance is obtained. In this paper, an improved sliding mode observer method is proposed in the middle and high speed region. The sliding mode observer is constructed for two kinds of PMSM, namely, the surface mount observer and the embedded one. The buffeting strategy of the traditional sliding mode observer method is designed for the buffeting problem of the traditional sliding mode observer method. The accuracy of position and speed estimation is improved. In order to widen the speed range of PMSM, the MTPA control is used under the rated speed and the weak magnetic field control is used above the rated speed. The MTPA and the weak magnetic algorithm designed in this paper take into account the change of inductance parameters. For the proposed position sensorless hybrid control strategy, the switching method of high frequency voltage injection and sliding mode observer and the switching method between MTPA and weak magnetic field control are also designed. In order to verify the proposed control strategy, this paper simulates the proposed control strategy in Matlab/Simulink, and carries out experimental verification on a set of industrial PMSM driver hardware platform. The experiments such as starting, speed step setting, torque mutation and efficiency measurement are carried out. The simulation and experimental results show that the proposed control strategy has a high accuracy for the estimation of rotor position and speed, and the closed-loop control has good steady and dynamic performance and can be started. The smooth switching between the two sensorless strategies and the high speed weak magnetic field operation prove the effectiveness and advantage of the proposed hybrid control strategy. The control strategy can be extended to household appliances, electric vehicles and other occasions.
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM341
【相似文献】
相关期刊论文 前10条
1 董富红,沈艳霞,纪志成;永磁无刷直流电机无位置传感器估计方法综述[J];微电机(伺服技术);2003年05期
2 陈志勇,高海欧;无位置传感器的方波驱动无刷直流电机控制系统[J];科技资讯;2005年22期
3 李翠萍;王新生;高阳;;无位置传感器永磁同步电动机控制系统[J];微特电机;2007年12期
4 文宇良;张朝阳;刘雄;何亚屏;许峻峰;;基于无位置传感器的永磁同步电机带速度重新投入控制算法研究[J];大功率变流技术;2012年03期
5 何栋炜;彭侠夫;周结华;;一种改进的永磁同步电机无位置传感器直接转矩控制[J];福州大学学报(自然科学版);2008年S1期
6 文永明,沈传文,苏彦民;基于无位置传感器的永磁电机控制技术综述[J];微电机(伺服技术);2002年06期
7 李玉忍,谢利理,齐蓉,林辉;永磁同步电机无位置传感器调速系统的研究[J];西北工业大学学报;2003年04期
8 韩则胤;邓志奇;陈阳生;;车用空调系统中无位置传感器技术的应用[J];机电工程;2010年06期
9 刘宁庄;李中军;刘华旭;;一种带通滤波器在无位置传感器转子检测中的应用[J];微电机;2014年04期
10 李先祥,罗中良,徐小增,肖红军;无位置传感器的永磁同步电机直接转矩控制系统[J];兰州大学学报;2005年04期
相关会议论文 前7条
1 王钦恒;费浙平;;三相无刷无位置传感器电机在硬盘中的应用[A];第七届中国小电机技术研讨会论文集[C];2002年
2 邹积涛;白山;刘一恒;;潜油式永磁同步直线抽油机无位置传感器控制系统研究[A];2008中国电工技术学会电力电子学会第十一届学术年会论文摘要集[C];2008年
3 梁业庭;;一种新型无位置传感器算法的实现[A];湖北省电工技术学会、武汉电工技术学会2013年度学术年会、第五届“智能电网”暨“电机能效提升”发展论坛论文集[C];2013年
4 王斌;吴冬燕;;ACFO无位置传感器变频空调控制系统[A];中国制冷学会2005年制冷空调学术年会论文集[C];2005年
5 石会;陈志辉;;基于MC56F8013&EKF算法的无位置传感器PMSM调速系统[A];2006中国电工技术学会电力电子学会第十届学术年会论文摘要集[C];2006年
6 王进;;永磁无刷直流电机无位置感应器控制策略现状及趋势[A];湖北省电工技术学会2004年学术年会论文集[C];2004年
7 孙可;陈慧;;EPS用永磁同步电机无位置传感器混合控制[A];面向未来的汽车与交通——2013中国汽车工程学会年会论文集精选[C];2013年
相关博士学位论文 前2条
1 张伯泽;内置式永磁同步电机无位置传感器复合控制研究[D];上海大学;2016年
2 吴元元;高速永磁无刷直流电机电磁场理论以及无位置传感器技术的研究[D];南京航空航天大学;2012年
相关硕士学位论文 前10条
1 肖宏伟;基于无位置传感器的直驱风电机侧三电平变流器研究[D];燕山大学;2015年
2 高江魁;无位置传感器的永磁无刷直流电机运行控制研究[D];西南交通大学;2015年
3 巩洪峰;三相永磁容错电机无位置传感器矢量控制系统研究[D];大连海事大学;2015年
4 薄聪;基于MC56F84789风机驱动系统设计[D];哈尔滨工业大学;2015年
5 杨远彬;新能源汽车用凸极永磁同步电机滑模无位置传感器研究[D];哈尔滨工业大学;2015年
6 李洁;基于脉振高频信号注入SPMSM低速无位置传感器技术研究[D];南京航空航天大学;2015年
7 朱洲;SRM电动汽车驱动系统无位置传感器控制策略研究[D];哈尔滨工业大学;2016年
8 范方方;无位置传感器的直流无刷电机控制系统研究[D];中国海洋大学;2015年
9 丁洋洋;无位置传感器永磁同步电机控制研究与设计[D];合肥工业大学;2016年
10 刘二豪;外转子永磁无刷直流电机无位置传感器控制[D];西北工业大学;2015年
,本文编号:2384529
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2384529.html