计及PMU的鲁棒电力系统预测辅助状态估计
[Abstract]:Power system state estimation plays an important role in modern energy management system (EMS) and is the basis for dispatcher to make correct decision. However, the measurement data are often contaminated by the inherent errors of the measuring device and transmission noise, and the estimation results of the interference state are misled by the dispatcher. Therefore, it is important to improve the robustness of the state estimation algorithm and the ability to suppress bad data to ensure the stable operation of power system. With the development of measuring device technology, synchronous phasor device (PMU) is widely used in power system, which provides high precision and high synchronization measurement for state estimation. At the same time, the sources of PMU measurement and SCADA measurement are different and independent, which can effectively suppress the bad data in SCADA measurement and further improve the robustness of the algorithm. Therefore, this paper mainly proposes a more robust predictor-aided state estimation algorithm, and explores the effect of PMU measurements on the estimation accuracy and robustness of the algorithm. The main contents of this paper are as follows: 1. This paper briefly introduces several algorithms used in state estimation, including weighted least square method, Kalman filter and extended Kalman filter. Based on SCADA measurement and the improvement of extended Kalman filter (EKF), an extended Kalman filter algorithm (GM-EKF), a generalized maximum likelihood type, is proposed. Basic ideas: firstly, the linear regression framework is constructed by using EKF's equation of state and measurement equation. Then, the outliers are identified by projection statistic algorithm (PS) and the equivalent weight function is constructed. Then, the evaluation function selects the Huber function, constructs the objective function similar to WLS and solves it by IRLS. In order to verify the effectiveness and robustness of the algorithm, the GM-EKF algorithm is simulated in the IEEE standard test system, and the results are compared with the related algorithms. 3. Based on SCADA/PMU mixed measurement, the effect of PMU measurement on estimation accuracy and robustness of GM-EKF algorithm is investigated. The basic idea: according to the different fusion methods of PMU measurement and SCADA measurement, one is that the state variable is polar coordinate and PMU measurement is added directly to form a nonlinear robust predictive auxiliary state estimation algorithm. The other is to process the collected SCADA measurements first and take the state estimators and PMU measurements as new measurements to form a linear robust predictive auxiliary state estimation algorithm in rectangular coordinates. The algorithm is simulated in IEEE standard test system and the simulation results are analyzed.
【学位授予单位】:西南交通大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM73
【参考文献】
相关期刊论文 前10条
1 朱杰;张葛祥;王涛;赵俊博;;电力系统状态估计欺诈性数据攻击及防御综述[J];电网技术;2016年08期
2 朱杰;张葛祥;;基于历史数据库的电力系统状态估计欺诈性数据防御[J];电网技术;2016年06期
3 丁宏恩;高宗和;苏大威;赵家庆;常乃超;龚成明;;混合量测状态估计相角参考点坏数据问题的处理方法[J];电力系统自动化;2014年09期
4 赵俊博;张葛祥;黄彦全;;含新能源电力系统状态估计研究现状和展望[J];电力自动化设备;2014年05期
5 林桂华;安天瑜;周苏荃;张艳军;孙明一;;计及PMU量测信息的量测量变换状态估计[J];电网技术;2009年17期
6 程涛;黄彦全;申铁;;遗传算法在PMU优化配置中的应用[J];电力系统及其自动化学报;2009年01期
7 卢志刚;张宗伟;;基于量测量替换与标准化残差检测的不良数据辨识[J];电力系统自动化;2007年13期
8 卫志农;李阳林;郑玉平;;基于混合量测的电力系统线性动态状态估计算法[J];电力系统自动化;2007年06期
9 秦晓辉;毕天姝;杨奇逊;;计及PMU的混合非线性状态估计新方法[J];电力系统自动化;2007年04期
10 黄彦全;肖建;李云飞;邵明;黄庆;;基于量测数据相关性的电力系统不良数据检测和辨识新方法[J];电网技术;2006年02期
相关博士学位论文 前1条
1 王英涛;基于WAMS的电力系统动态监测及分析研究[D];中国电力科学研究院;2006年
相关硕士学位论文 前5条
1 杨霁;基于状态预测的电力系统状态估计及不良数据检测与辨识[D];西南交通大学;2015年
2 李波;混合量测下电力系统动态状态估计研究[D];上海交通大学;2013年
3 林桂华;基于PMU的电力系统状态估计研究[D];哈尔滨工业大学;2009年
4 李阳林;基于WAMS/SCADA混合量测的电力系统动态状态估计算法研究[D];河海大学;2007年
5 孙国强;基于相量测量的电力系统状态估计研究[D];河海大学;2005年
,本文编号:2421347
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2421347.html