当前位置:主页 > 科技论文 > 电气论文 >

发电锅炉飞灰含碳量软测量建模及燃烧优化运行研究

发布时间:2019-03-15 21:03
【摘要】:随着工业生产和社会经济的飞速发展,节能环保问题日益受到人类的重视。火力发电的燃煤锅炉在燃烧过程中不仅要消耗大量的能源,还会排出大量的废气和有害烟尘,对大气环境造成严重的污染。因此,实现能源的高效利用是火力发电行业实现节能减排的一项有效措施。飞灰含碳量是衡量火力发电锅炉燃烧效率高低的一项重要指标,目前,国内电力生产企业大部分都采用人工取样、制样和实验室化学分析的方法进行离线检测,而对于锅炉燃烧优化工程上通常也只凭借操作经验进行燃料和配风的人工调整,难以达到理想的运行效果,导致了能源的浪费,因此开展此项课题的研究具有重要的工程意义。本文以发电燃煤锅炉为对象,分析了锅炉生产过程的工艺特点,介绍了飞灰含碳量监测和锅炉燃烧优化的研究现状,并深入分析了影响飞灰含碳量相关因素,在此基础上,采用改进的BP神经网络算法建立了飞灰含碳量预测模型,并依据一种新的群体智能算法───狼群算法对锅炉燃烧工况进行优化,最后通过仿真和实测数据验证了预测模型和燃烧优化方法的有效性,具有较高的工程应用价值。本文主要研究内容如下:1.通过对国内外研究现状的调研综述,分析了发电燃煤锅炉燃烧过程的工艺特点,并归纳了有关飞灰含碳量影响因素以及降低飞灰含碳量常用方法。2.针对BP神经网络预测飞灰含碳量存在的样本误差问题,对神经网络误差函数进行改进设计,并验证了对于输入样本中的干扰具有较好的抑制作用。3.采用主元分析方法对神经网络模型进行精简,针对飞灰含碳量测量输入变量过多的问题,分析了各输入变量对输出变量的贡献值,筛选了网络的输入参数;设计了基于主元分析的BP神经网络飞灰含碳量预测模型,并进行了仿真分析和实验验证。4.提出了基于狼群算法的锅炉燃烧优化方案。依据飞灰含碳量的预测数据,利用狼群算法对燃烧工况进行优化,选择最有利于燃烧的控制方案,并对其进行了仿真研究。
[Abstract]:With the rapid development of industrial production and social economy, the problem of energy saving and environmental protection has been paid more and more attention by human beings. Coal-fired boilers with thermal power not only consume a lot of energy, but also emit a large amount of exhaust gas and harmful smoke and dust, which cause serious pollution to the atmospheric environment. Therefore, the realization of efficient use of energy is an effective measure to achieve energy conservation and emission reduction in thermal power industry. The carbon content of fly ash is an important index to measure the combustion efficiency of thermal power boiler. At present, most domestic power production enterprises use manual sampling, sample making and laboratory chemical analysis to carry out off-line detection. For boiler combustion optimization engineering, it is difficult to achieve ideal operation effect by manual adjustment of fuel and air distribution only by virtue of operation experience, which leads to waste of energy. Therefore, it is of great engineering significance to carry out the research on this subject. Taking coal-fired boiler for power generation as an object, this paper analyzes the technological characteristics of boiler production process, introduces the research status of carbon content monitoring of fly ash and optimization of boiler combustion, and deeply analyzes the related factors affecting carbon content of fly ash, on the basis of which, the paper introduces the research status of carbon content monitoring of fly ash and optimization of boiler combustion. Based on the improved BP neural network algorithm, the prediction model of carbon content in fly ash is established, and the combustion condition of boiler is optimized according to a new swarm intelligent algorithm called wolf swarm algorithm. Finally, the effectiveness of the prediction model and combustion optimization method is verified by simulation and measured data, which has high engineering application value. The main contents of this paper are as follows: 1. Based on the survey of the current research situation at home and abroad, the process characteristics of combustion process in power generation coal-fired boilers are analyzed, and the factors affecting the carbon content of fly ash and the commonly used methods to reduce the carbon content of fly ash are summarized. 2. Aiming at the problem of sample error in prediction of carbon content in fly ash by BP neural network, the error function of neural network is improved, and it is verified that the neural network error function has a better inhibitory effect on the interference in input samples. 3. The neural network model is simplified by principal component analysis. Aiming at the problem that there are too many input variables in carbon measurement of fly ash, the contribution value of each input variable to the output variable is analyzed, and the input parameters of the network are selected. The prediction model of carbon content in fly ash based on BP neural network based on principal component analysis is designed and simulated and verified by experiments. 4. A boiler combustion optimization scheme based on wolf swarm algorithm is proposed. According to the prediction data of carbon content in fly ash, the combustion condition is optimized by using wolf swarm algorithm, and the most favorable control scheme is selected, and the simulation study is carried out.
【学位授予单位】:安徽工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM621.2

【参考文献】

相关期刊论文 前10条

1 薛俊杰;王瑛;李浩;肖吉阳;;一种狼群智能算法及收敛性分析[J];控制与决策;2016年12期

2 魏倩;蔡远利;;J_2项摄动影响下的大气层外弹道规划改进算法[J];控制理论与应用;2016年09期

3 王东风;刘千;韩璞;赵文杰;;基于大数据驱动案例匹配的电站锅炉燃烧优化[J];仪器仪表学报;2016年02期

4 王富强;;基于逆向传递策略的直流锅炉主汽温网络化预测控制[J];中国电机工程学报;2015年19期

5 禚真福;杨永建;樊晓光;王晟达;南建国;王久崇;;改进二分粒子群优化算法的阵列方向图综合[J];系统工程与电子技术;2015年11期

6 吴虎胜;张凤鸣;战仁军;李浩;梁晓龙;;利用改进的二进制狼群算法求解多维背包问题[J];系统工程与电子技术;2015年05期

7 陈智轩;卢子广;胡立坤;彭宇宁;;汽包锅炉汽轮机系统的非线性σ校正复合模型参考自适应控制[J];中国电机工程学报;2013年26期

8 吴虎胜;张凤鸣;吴庐山;;一种新的群体智能算法——狼群算法[J];系统工程与电子技术;2013年11期

9 于军华;邱化慧;衣华;;气力输送在锅炉飞灰回燃技术中的应用[J];中国粉体技术;2010年03期

10 温文杰;马晓茜;刘翱;;锅炉混煤掺烧的飞灰含碳量预测与运行优化[J];热力发电;2010年03期

相关博士学位论文 前1条

1 匡芳君;群智能混合优化算法及其应用研究[D];南京理工大学;2014年

相关硕士学位论文 前8条

1 刘畅;立体图像舒适度的定量分析及评价研究[D];天津大学;2014年

2 王传伟;基于狼群算法的三维传感器优化布置研究[D];大连理工大学;2014年

3 周娟;改进BP算法在海堤渗压多测点监测预报中的应用研究[D];合肥工业大学;2014年

4 程学远;煤粉分离器动叶最优弯扭角及安装角的数值研究[D];华北电力大学;2014年

5 戎亚萍;基于路况数据的交通流预测模型及其对比分析[D];北京交通大学;2013年

6 刘井波;基于自组织神经网络的远程故障诊断技术研究[D];电子科技大学;2008年

7 陈雪平;微波飞灰在线测碳仪的研究和系统实现[D];电子科技大学;2006年

8 杨仁付;采用导数约束关系的前向神经网络学习优化方法研究[D];东南大学;2006年



本文编号:2440985

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2440985.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6a41f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com