发电锅炉飞灰含碳量软测量建模及燃烧优化运行研究
[Abstract]:With the rapid development of industrial production and social economy, the problem of energy saving and environmental protection has been paid more and more attention by human beings. Coal-fired boilers with thermal power not only consume a lot of energy, but also emit a large amount of exhaust gas and harmful smoke and dust, which cause serious pollution to the atmospheric environment. Therefore, the realization of efficient use of energy is an effective measure to achieve energy conservation and emission reduction in thermal power industry. The carbon content of fly ash is an important index to measure the combustion efficiency of thermal power boiler. At present, most domestic power production enterprises use manual sampling, sample making and laboratory chemical analysis to carry out off-line detection. For boiler combustion optimization engineering, it is difficult to achieve ideal operation effect by manual adjustment of fuel and air distribution only by virtue of operation experience, which leads to waste of energy. Therefore, it is of great engineering significance to carry out the research on this subject. Taking coal-fired boiler for power generation as an object, this paper analyzes the technological characteristics of boiler production process, introduces the research status of carbon content monitoring of fly ash and optimization of boiler combustion, and deeply analyzes the related factors affecting carbon content of fly ash, on the basis of which, the paper introduces the research status of carbon content monitoring of fly ash and optimization of boiler combustion. Based on the improved BP neural network algorithm, the prediction model of carbon content in fly ash is established, and the combustion condition of boiler is optimized according to a new swarm intelligent algorithm called wolf swarm algorithm. Finally, the effectiveness of the prediction model and combustion optimization method is verified by simulation and measured data, which has high engineering application value. The main contents of this paper are as follows: 1. Based on the survey of the current research situation at home and abroad, the process characteristics of combustion process in power generation coal-fired boilers are analyzed, and the factors affecting the carbon content of fly ash and the commonly used methods to reduce the carbon content of fly ash are summarized. 2. Aiming at the problem of sample error in prediction of carbon content in fly ash by BP neural network, the error function of neural network is improved, and it is verified that the neural network error function has a better inhibitory effect on the interference in input samples. 3. The neural network model is simplified by principal component analysis. Aiming at the problem that there are too many input variables in carbon measurement of fly ash, the contribution value of each input variable to the output variable is analyzed, and the input parameters of the network are selected. The prediction model of carbon content in fly ash based on BP neural network based on principal component analysis is designed and simulated and verified by experiments. 4. A boiler combustion optimization scheme based on wolf swarm algorithm is proposed. According to the prediction data of carbon content in fly ash, the combustion condition is optimized by using wolf swarm algorithm, and the most favorable control scheme is selected, and the simulation study is carried out.
【学位授予单位】:安徽工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM621.2
【参考文献】
相关期刊论文 前10条
1 薛俊杰;王瑛;李浩;肖吉阳;;一种狼群智能算法及收敛性分析[J];控制与决策;2016年12期
2 魏倩;蔡远利;;J_2项摄动影响下的大气层外弹道规划改进算法[J];控制理论与应用;2016年09期
3 王东风;刘千;韩璞;赵文杰;;基于大数据驱动案例匹配的电站锅炉燃烧优化[J];仪器仪表学报;2016年02期
4 王富强;;基于逆向传递策略的直流锅炉主汽温网络化预测控制[J];中国电机工程学报;2015年19期
5 禚真福;杨永建;樊晓光;王晟达;南建国;王久崇;;改进二分粒子群优化算法的阵列方向图综合[J];系统工程与电子技术;2015年11期
6 吴虎胜;张凤鸣;战仁军;李浩;梁晓龙;;利用改进的二进制狼群算法求解多维背包问题[J];系统工程与电子技术;2015年05期
7 陈智轩;卢子广;胡立坤;彭宇宁;;汽包锅炉汽轮机系统的非线性σ校正复合模型参考自适应控制[J];中国电机工程学报;2013年26期
8 吴虎胜;张凤鸣;吴庐山;;一种新的群体智能算法——狼群算法[J];系统工程与电子技术;2013年11期
9 于军华;邱化慧;衣华;;气力输送在锅炉飞灰回燃技术中的应用[J];中国粉体技术;2010年03期
10 温文杰;马晓茜;刘翱;;锅炉混煤掺烧的飞灰含碳量预测与运行优化[J];热力发电;2010年03期
相关博士学位论文 前1条
1 匡芳君;群智能混合优化算法及其应用研究[D];南京理工大学;2014年
相关硕士学位论文 前8条
1 刘畅;立体图像舒适度的定量分析及评价研究[D];天津大学;2014年
2 王传伟;基于狼群算法的三维传感器优化布置研究[D];大连理工大学;2014年
3 周娟;改进BP算法在海堤渗压多测点监测预报中的应用研究[D];合肥工业大学;2014年
4 程学远;煤粉分离器动叶最优弯扭角及安装角的数值研究[D];华北电力大学;2014年
5 戎亚萍;基于路况数据的交通流预测模型及其对比分析[D];北京交通大学;2013年
6 刘井波;基于自组织神经网络的远程故障诊断技术研究[D];电子科技大学;2008年
7 陈雪平;微波飞灰在线测碳仪的研究和系统实现[D];电子科技大学;2006年
8 杨仁付;采用导数约束关系的前向神经网络学习优化方法研究[D];东南大学;2006年
,本文编号:2440985
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2440985.html