当前位置:主页 > 科技论文 > 电气论文 >

永磁交流伺服电机弱磁控制的分析与探究

发布时间:2019-04-01 19:00
【摘要】:高性能永磁交流伺服电机广泛应用于航空航天、装备制造、军用与民用工业等领域。为了拓展其转速运行范围,增大高速运行时的功率密度,本文针对永磁交流伺服电机的弱磁特性进行深入研究,对影响电机弱磁性能的相关参数进行了仿真优化,提出了弱磁控制实现方法,在此基础上设计一台永磁交流伺服电机,完成驱动控制系统硬件设计,编译了弱磁控制程序,给出了实验验证结果。针对表贴式与内置式两种典型永磁转子结构,对永磁交流伺服电机电压极限曲线中心在电流极限圆内、外的两种情况,全面深入的分析了该类电机的弱磁控制特性,推导出了从零转速经弱磁基速(额定转速)至弱磁最高转速的全范围机械与功率特性曲线,得出了最大功率和最大转矩点以及最大可能的弱磁范围。对影响弱磁性能的电机参数,在“V”型转子结构下提出了如何选取永磁体材料和设计永磁磁路的方法。运用ANSYS MAXWELL有限元软件对电机极弧因数、漏磁因数、反电势幅值与气隙磁密波形进行了仿真优化。使用ANSYS Workbench有限元软件分析电机在电流极限圆上调速运行时温度分布,验证了所设计的电机温升分布满足国家标准。设计了弱磁驱动控制系统的控制与驱动电路,并进行了传感器的分析与选取,给出了弱磁控制算法与实现方法,编写了主程序、PWM中断程序、外部定时器中断程序、位置检测程序以及弱磁控制等多个软件程序.设计并试制了一台转子采用“V”型结构,额定功率12kW,额定转矩36N m,8极12槽分数槽集中绕组永磁交流伺服电机及驱动控制系统。实验结果证明:电机的性能指标与弱磁运行特性与理论推导一致,满足设计要求,并进行电机温升实验,其结果符合相关国家标准规定。本文提出的方法与讨论分析对具有弱磁控制功能的永磁交流伺服电机及驱动控制技术的分析、研究与设计等具有一定的指导意义。
[Abstract]:High performance permanent magnet AC servo motor is widely used in aerospace, equipment manufacturing, military and civil industries. In order to expand the operating range of the motor speed and increase the power density at high speed, this paper makes a deep study on the magnetic weakening characteristics of permanent magnet AC servo motor, and optimizes the related parameters which affect the performance of the permanent magnet AC servo motor. On the basis of this, a permanent magnet AC servo motor is designed, the hardware design of the drive control system is completed, the weak magnetic control program is compiled, and the experimental verification results are given. Aiming at the two typical permanent magnet rotor structures, the voltage limit curve center of the permanent magnet AC servo motor is in the current limit circle, and the weak magnetic control characteristic of the permanent magnet AC servo motor is analyzed thoroughly and deeply, which is the center of the voltage limit curve of the permanent magnet AC servo motor in the inside and outside of the current limit circle. The whole range of mechanical and power characteristic curves from zero speed through weak magnetic base speed (rated speed) to maximum magnetic speed is derived. The maximum power and maximum torque point as well as the maximum possible magnetic weakening range are obtained. How to select the permanent magnet material and how to design the permanent magnetic circuit under the "V" rotor structure are presented for the motor parameters which affect the weak magnetic performance. The pole arc factor, magnetic flux leakage factor, back EMF amplitude and air gap magnetic density waveform of the motor are simulated and optimized by using ANSYS MAXWELL finite element software. The ANSYS Workbench finite element software is used to analyze the temperature distribution of the motor in the current limit circle, and it is verified that the temperature rise distribution of the designed motor meets the national standard. The control and driving circuit of the weak magnetic drive control system is designed, and the sensor is analyzed and selected. The weak magnetic control algorithm and the realization method are given. The main program, the PWM interrupt program, the external timer interrupt program, the main program, the external timer interrupt program, the main program, the interrupt program and the external timer interrupt program are programmed. Position detection program and weak magnetic control and other software programs. The permanent magnet AC servo motor and drive control system of a rotor with "V" structure, rated power 12kW, rated torque 36Nm, 8 poles and 12 slots and fractional slot central windings are designed and manufactured. The experimental results show that the performance index of the motor is consistent with the theoretical derivation and meets the design requirements. The motor temperature rise experiment is carried out, and the results accord with the relevant national standards. The method and discussion presented in this paper have some guiding significance for the analysis, research and design of the permanent magnet AC servo motor with weak magnetic control function and the driving control technology.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM383.4

【参考文献】

相关期刊论文 前10条

1 陈洪萍;王秀和;;复合转子异步起动永磁同步电动机起动过程中永磁体退磁的研究[J];微电机;2017年01期

2 郑再平;吴红星;王璐;倪永健;;永磁同步电机伺服系统速度环控制技术[J];微电机;2017年01期

3 李立毅;张江鹏;闫海媛;于吉坤;;高过载永磁同步电机的电磁特性[J];电工技术学报;2017年02期

4 姜驰;郝鹤;沈建新;;弱磁调速永磁同步电动机基速点设计分析[J];微电机;2016年02期

5 柳佳彬;丁焕迪;潘道品;何关富;;新型控制电机伺服驱动器的设计[J];电子设计工程;2016年04期

6 曹翼;李光耀;;不同极槽配合永磁伺服电机的电磁性能分析和比较[J];电机与控制应用;2015年11期

7 刘勇求;严其艳;;永磁同步电机伺服系统设计[J];信息技术与信息化;2015年10期

8 陈益广;郑军;魏娟;郑再平;郭喜彬;;舵机用永磁同步电机的设计与温度场分析[J];电工技术学报;2015年14期

9 刘蕾;刘光复;刘马林;朱标龙;;车用永磁同步电机三维温度场分析[J];中国机械工程;2015年11期

10 魏雪环;兰志勇;谢先铭;廖克亮;李虎如;陈麟红;;永磁体涡流损耗与永磁同步电机温度场研究[J];电机与控制应用;2015年05期

相关博士学位论文 前3条

1 朱卫光;电动车辆永磁同步电机转子永磁体涡流损耗及温度场研究[D];北京理工大学;2014年

2 沈启平;车用高功率密度永磁同步电机的研究[D];沈阳工业大学;2012年

3 江善林;高速永磁同步电机的损耗分析与温度场计算[D];哈尔滨工业大学;2010年

相关硕士学位论文 前8条

1 尹惠;永磁同步电机损耗计算及温度场分析[D];哈尔滨工业大学;2015年

2 石敏;永磁同步电机高性能弱磁控制策略的研究[D];湖南工业大学;2015年

3 赵守鑫;基于STM32的永磁同步电机调速控制系统的研究[D];吉林大学;2015年

4 宋家斌;350kW永磁推进电机设计及其温升计算[D];沈阳工业大学;2015年

5 王勇;永磁同步电动机内流变特性及传热研究[D];哈尔滨理工大学;2015年

6 刘学俊;基于STM32的永磁直流无刷电机的控制及其在绕线机上的应用[D];厦门大学;2014年

7 汪文博;永磁同步电机的热路模型研究[D];浙江大学;2014年

8 付雅军;电动轿车用永磁同步电机的温度场分析[D];辽宁工业大学;2014年



本文编号:2451798

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2451798.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户97e9d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com