家用电器负荷在线参数辨识方法的研究
[Abstract]:Load monitoring is the basis for obtaining users' detailed electricity consumption situation, power consumption behavior and energy saving work. Power supply enterprises make reasonable demand response strategies by analyzing user behavior, and guide users to use electricity correctly. In order to ensure the stability and economy of power supply, users can reasonably arrange their own power consumption and reduce energy consumption and expenditure by understanding the power supply situation, power grid policies and their own accurate power consumption information. The non-intrusive load monitoring method only needs to install the information collection device at the power entrance of the monitored system, and use the appropriate algorithm to process and analyze the power consumption data, so that the power consumption information of each load in the system can be obtained. It effectively solves the problems of difficult installation, maintenance and management of monitoring equipment, which is the development direction of load monitoring in the future. In this paper, a method of on-line parameter identification for household appliances under non-intrusive environment is studied. Starting with the load characteristics, the load switching identification, feature extraction and load classification identification are studied. The main work is as follows: (1) the research background and significance of on-line parameter identification method for household appliance load are described. This paper studies the current situation of load monitoring system and home appliance load feature extraction and classification at home and abroad, and studies the advantages, physical structure and working principle of non-intrusive load monitoring system based on smart grid methodology. (2) establish the hardware system of load collection, complete the collection of common household appliances single operation data and mixed operation data, analyze the characteristics of load electricity, take load current, voltage, active power, reactive power, high-order harmonic content, and make use of load current, voltage, active power, reactive power and high-order harmonic content. The multi-dimensional feature such as phase angle is a priori training sample, combined with load hardware structure, the unique characteristics of different loads are excavated. (3) the switching identification technology based on load switching state is studied. The load feature samples of eight typical electrical appliances are reduced by principal component analysis, the optimal identification characteristics are obtained, and a two-layer classifier is established according to the load evaluation value. The principal eigenvalue matrix of household appliances is deaggregated in one-dimensional space by Fisher supervised linear discriminant, and a classifier is established. In the experimental environment, the classifier is designed by using Matlab. (4) the on-line parameter identification system of household appliances is built with virtual instrument, which realizes the landing, electric energy monitoring, interrupt state monitoring, single load operation status display, and so on. Historical data query and communication functions make it more convenient and intuitive to demonstrate the load online parameter identification method proposed in this paper.
【学位授予单位】:华北电力大学(北京)
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TM925.06
【相似文献】
相关期刊论文 前10条
1 蒋存波;刘丽;王聪;钟凡;;一种温度对象参数辨识方法及仿真研究[J];科学技术与工程;2009年11期
2 孙闻;孔祥玉;张科;张芳;杨群;;基于实测数据的发电机调速系统参数辨识方法[J];电力系统及其自动化学报;2014年03期
3 任章,严卫生,徐德民;一种全并行神经网络参数辨识方法[J];西北工业大学学报;1997年02期
4 孙泽昌;魏学哲;王晓宇;黎燕航;;一种采用参数调整学习的感应电机转子参数辨识方法[J];电气自动化;1998年01期
5 王洪瑞;宋维公;马淑芬;;一种实用的直流机参数辨识方法[J];电气传动;1990年01期
6 孙建平;闫永跃;于树新;李庆周;;时滞时变对象参数辨识方法[J];电光与控制;2008年01期
7 李永军;马立元;王天辉;段永刚;;一种高阶累积量的模态参数辨识方法改进及其应用[J];海军工程大学学报;2012年01期
8 管秀鹏;孙元章;程林;;基于综合广域信息的负荷参数辨识方法[J];电力自动化设备;2009年01期
9 徐亚卿;李永军;王天辉;李世龙;;高阶累积量的子空间模态参数辨识方法研究[J];机械与电子;2012年01期
10 吴晓新;阮毅;;异步电机参数辨识方法的研究[J];南通纺织职业技术学院学报;2005年04期
相关博士学位论文 前3条
1 韩放;叶片—转子系统振动特性与参数辨识方法研究[D];大连理工大学;2013年
2 杨凯;仅利用输出响应的时变模态参数辨识方法研究[D];哈尔滨工业大学;2014年
3 樊江玲;基于输出响应的模态参数辨识方法研究[D];上海交通大学;2007年
相关硕士学位论文 前10条
1 付婵君;非对称迟滞建模与迟滞系统辨识方法研究[D];华侨大学;2016年
2 程媛;家用电器负荷在线参数辨识方法的研究[D];华北电力大学(北京);2016年
3 王晓丹;火箭充液贮箱振动特性的时变模态参数辨识方法研究[D];哈尔滨工业大学;2013年
4 丛雨;气动执行阀粘滞特性建模与参数辨识方法研究[D];浙江大学;2010年
5 张杰;一种应用于汽轮机及其调节系统的智能寻优参数辨识方法[D];重庆大学;2014年
6 王诗彬;瞬态成分建模与参数辨识方法及其旋转机械故障诊断应用研究[D];苏州大学;2011年
7 张镇;未知激励下的模态参数辨识技术研究[D];南京航空航天大学;2009年
8 邱卫萍;加性噪声指数模型的参数辨识方法及在油田上的应用[D];吉林大学;2005年
9 赵歆;感应电动机离线参数辨识方法研究[D];重庆大学;2008年
10 杨瑞赓;一类Hammerstein模型的参数辨识方法研究[D];北京化工大学;2014年
,本文编号:2452408
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2452408.html