当前位置:主页 > 科技论文 > 电气论文 >

供热机组建模及快速变负荷控制

发布时间:2019-04-02 19:00
【摘要】:在我国电源结构中,供热机组占据很大比例,特别是在寒冷供热季节,黑龙江、吉林、辽宁、蒙东、蒙西、宁夏等省级电网几乎完全依靠供热机组提供调峰调频能力,供热机组的“以热定电”运行方式,不仅仅限制了机组的调峰范围,也在很大程度上限制了机组响应动态负荷指令的能力。事实上,在北方地区缺乏水电、燃气等具有快速调频能力机组的前提下,提高供热工况下响应负荷指令和一次调频指令的性能,对电网安全稳定性显得尤为重要。前期研究表明,城市供热热网具有很大的储能,合理利用这部分储能,可大幅度提高机组响应发电负荷的能力,并且不对热用户造成可察觉的影响。但对供热热网储能容量的定量分析、供热机组对象建模及特性分析、控制系统优化设计的研究还有待进一步深入,围绕以上问题,开展以下工作:(1)储能容量的定量计算。屏弃了利用热网传热介质比热容计算储能容量的方法,提出了依据传热介质、管道、热交换器的热惯性计算储能容量的方法。(2)对供热机组的关键执行机构,汽轮机低压缸进汽流量调节蝶阀(LV)、汽轮机供热抽汽流量调节蝶阀(EV)进行开度-流量非线性特性拟合,并设计增益补偿控制逻辑。(3)完善了供热机组的简化非线性动态模型,将纯凝机组燃料量-汽轮机高压缸进汽调节阀开度对汽轮机前蒸汽压力-发电负荷双入双出模型改进为供热机组燃料量-汽轮机高压缸进汽调节阀开度-LV开度-EV开度-热网循环水流量-热网循环水回水温度对汽轮机前蒸汽压力-发电负荷-供热抽汽压力-供热抽汽流量六入四出模型。(4)设计了能够充分利用热网储能实现高速率变负荷的供热机组协调控制系统,该系统能够在纯凝工况下和供热工况下进行无扰切换。上述研究成果应用于LPS热电厂1号、2号机组快速变负荷控制系统优化项目中,实际系统已经在一个供热季内连续投入运行。供热工况下机组发电负荷响应速率由1%额定发电负荷每分钟提高到3%~4%额定发电负荷每分钟,蒸汽压力、燃料量、汽温波动幅度明显减小。论文工作进一步完善了供热机组快速变负荷控制方面的基础理论和工程技术。
[Abstract]:In China's power supply structure, heating units occupy a large proportion, especially in the cold heating season, Heilongjiang, Jilin, Liaoning, Mengdong, Mengxi, Ningxia and other provincial power grids almost entirely rely on heating units to provide peak-shaving and frequency-modulation capacity. The operation mode of heat supply unit not only limits the range of peak shaving, but also limits the ability of unit to respond to dynamic load instruction to a great extent. In fact, it is very important for the safety and stability of power network to improve the performance of response load instruction and primary frequency regulation instruction under heating condition under the premise of lack of hydropower, gas and other units with fast frequency modulation ability in the north of China. The previous research shows that the urban heat supply network has a large amount of energy storage. Reasonable utilization of this part of energy storage can greatly improve the capacity of generating units to respond to power generation load, and does not cause perceptible influence on thermal users. However, the quantitative analysis of the energy storage capacity of the heating network, the modeling and characteristic analysis of the heating unit object, and the optimization design of the control system need to be further studied. Based on the above problems, the following work is carried out: (1) quantitative calculation of the energy storage capacity. The method of calculating energy storage capacity based on thermal inertia of heat transfer medium, pipeline and heat exchanger is put forward. (2) the key executive mechanism of heat supply unit is given, and the method of calculating energy storage capacity based on heat transfer medium specific heat capacity of heat transfer network is dispensed with. Steam Turbine low pressure cylinder intake flow Control Butterfly (LV), Steam Turbine heating and extraction flow regulating Butterfly Valve (EV) for opening-flow non-linear characteristics fitting, The gain compensation control logic is designed. (3) the simplified nonlinear dynamic model of heating unit is improved. Improvement of fuel quantity of pure condensing unit-opening of steam inlet throttle valve of steam turbine high pressure cylinder to double in / out model of steam pressure-generating load of steam turbine as fuel quantity of heating unit-opening of steam inlet throttle valve of steam turbine high pressure cylinder-LV opening -EV opening-heat network circulating water flow-heat network circulating water return water temperature to steam turbine front steam pressure-generation load-heating extraction pressure-heating extraction steam flow six-in-four-out model is designed. (4) A six-in-four-out model is designed to make full use of heat. The coordinated control system of heat supply unit with high speed and variable load can be realized by network energy storage. The system can be switched undisturbed under pure condensation and heating conditions. The above research results have been applied to the optimization project of the rapid variable load control system for units 1 and 2 in LPS thermal power plant. The actual system has been put into operation continuously in one heating season. Under heating condition, the response rate of generating load increases from 1% rated generation load per minute to 3% ~ 4% rated generation load per minute, and the fluctuation of steam pressure, fuel quantity and steam temperature decreases obviously. In this paper, the basic theory and engineering technology of rapid variable load control of heating units are further improved.
【学位授予单位】:华北电力大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM621

【参考文献】

相关期刊论文 前10条

1 晋宏杨;孙宏斌;郭庆来;陈润泽;李正烁;;含大规模储热的光热电站—风电联合系统多日自调度方法[J];电力系统自动化;2016年11期

2 张舒铠;刘鑫屏;;一种非线性滤波器的设计[J];广东电力;2016年05期

3 刘卫东;石清;;我国区域产业转移对电力需求空间结构传导效应分析——以工业为例[J];华北电力大学学报(社会科学版);2016年02期

4 邓拓宇;田亮;刘吉臻;;供热机组负荷指令多尺度前馈协调控制方案[J];热力发电;2016年03期

5 曾名劭;陈健辉;;700MW超临界火电机组协调控制系统优化[J];能源研究与管理;2016年01期

6 章勇敏;刘雯雯;;可再生能源发电政策分析及建议[J];环境保护;2016年05期

7 赵书强;王扬;徐岩;殷加s,

本文编号:2452832


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2452832.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户80531***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com