当前位置:主页 > 科技论文 > 电气论文 >

高精度无源电阻发生器的研究

发布时间:2019-04-04 10:40
【摘要】:电阻发生器作为仪器仪表校准、电路测试等领域的重要基准源,广泛应用于汽车及航空仪表调校、万用表的阻抗测试以及电子电路调试等场合。目前,电阻发生技术主要包括有源和无源两种。其中,有源电阻发生技术功耗大且易干扰外部电路,因而在小功率仪表检测应用场合,更多地采用无源电阻发生技术,其原理简单易于实现,但无源电阻发生器在输出精度和稳定性方面尚存在不足。因此,对高精度无源电阻发生器的研究是亟需解决的问题。针对以上问题,本文提出一种高精度无源电阻发生器的研究。系统以ARM作为主控单元控制继电器切换实现无源电阻输出,通过与高精度万用表通信完成系统校准功能,并采用LCD显示模块和触摸转换芯片实现软件界面显示、用户操作的识别和响应功能。通过分析影响系统输出性能的硬件因素及其影响规律,采用模拟实际电阻输出的方法,确定各影响因素综合作用下电阻组合与其实际输出电阻值的定量关系,建立电阻输出模拟方程;分别采用广度优先搜索算法和分支定界算法对模拟方程进行求解,获取实际输出值最接近设定电阻值的最优电阻组合,通过对两种算法时间复杂度的对比分析,确定广度优先搜索算法作为最优电阻组合求解算法;基于GUI图形界面库开发下位机软件,通过人机交互单元识别并响应用户操作,完成下位机软件对电阻发生器的控制功能;基于Visual Studio2010开发环境,采用C#语言进行上位机软件设计,通过USB HID通信协议,完成上位机软件与电阻发生器的信息交互,从而通过上位机或下位机等两种方式实现无源电阻输出、系统校准、信息监控等功能,满足用户对电阻发生器的控制需求,达到良好的人机交互性能。通过无源电阻发生器的性能测试,实验结果表明:系统在实现1.0?~20 k?的输出范围、0.1?分辨力(1 k?以内,1 k?以上分辨力为1?)的技术指标下,在1.0?~11.0?输出范围内,系统输出最大相对误差为2.4%,11.1?~12 k?输出范围内,系统输出最大相对误差为0.8%,12 k?~20 k?输出范围内,系统输出最大相对误差为0.029%,系统响应时间优于500ms;系统输出值具有良好的重复性;且能够有效减小器件老化对系统输出准确度的影响,具有一定的稳定性。因此,该无源电阻发生器解决了现有无源电阻发生技术存在的输出精度低和稳定性差等问题,为高精度无源电阻输出提供一种新方法,具有较高的工程应用价值。
[Abstract]:As an important reference in the field of instrument calibration and circuit testing, resistance generator is widely used in automotive and aeronautical instrument adjustment, impedance test of multimeter and electronic circuit debugging and so on. At present, resistance generation technology mainly includes active and passive. Among them, active resistance generation technology has a large power consumption and is easy to interfere with external circuits. Therefore, passive resistance generation technology is more widely used in low power instrument detection applications, and its principle is simple and easy to realize. But the output precision and stability of passive resistance generator are still insufficient. Therefore, the research of high precision passive resistance generator is an urgent problem to be solved. In order to solve the above problems, a high precision passive resistance generator is proposed in this paper. The system uses ARM as the main control unit to control relay switch to realize passive resistance output. The system calibration function is completed by communicating with the high precision multimeter, and the software interface display is realized by using LCD display module and touch conversion chip. User action identification and response function. By analyzing the hardware factors affecting the output performance of the system and its influence rules, the quantitative relationship between the combination of the resistors and their actual output resistance values under the comprehensive action of each influence factor is determined by using the method of simulating the actual resistance output. The simulation equation of resistance output is established. The simulation equation is solved by breadth-first search algorithm and branch-bound algorithm respectively, and the optimal resistance combination with actual output value closest to the set resistance value is obtained, and the time complexity of the two algorithms is analyzed by comparing the time complexity of the two algorithms. Determine the breadth-first search algorithm as the optimal resistance combination algorithm; The software of lower computer is developed based on GUI graphic interface library. Through the identification and response of user operation by man-machine interaction unit, the control function of lower computer software to resistance generator is completed. Based on the Visual Studio2010 development environment, the upper computer software is designed with C # language. Through the communication protocol of USB HID, the information interaction between the upper computer software and the resistance generator is completed. So the passive resistance output, system calibration, information monitoring and other functions can be realized by the upper computer or the lower computer, which can meet the control requirements of the resistance generator and achieve good human-computer interaction performance. Through the performance test of the passive resistance generator, the experimental results show that the system is realized in the range of 1.0 ~ 20 km ~ (- 1). Output range, 0.1? Resolution (1 k? Within, 1 k? The above resolution is 1?) Under the technical index of 1.0? In the output range, the maximum relative error of the system output is 2.4%, 11.1 / 12k? Within the output range, the maximum relative error of the system output is 0.8%, and the maximum output error of the system is 12 kg / 20 kg? In the output range, the maximum relative error of the system output is 0.029%, the response time of the system is better than 500 Ms, and the output value of the system has good repeatability. And it can effectively reduce the influence of device aging on the system output accuracy, and has a certain stability. Therefore, the passive resistance generator solves the problems of low output precision and poor stability in the existing passive resistance generation technology, and provides a new method for high precision passive resistance output, which has high engineering application value.
【学位授予单位】:河南科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM54

【参考文献】

相关期刊论文 前10条

1 王淅蓉;刘要辉;彭建学;;电子式程控电阻、电容通用模拟器设计[J];电子技术;2015年07期

2 周奇文;邓华;;程控电阻板卡系统设计[J];安徽电子信息职业技术学院学报;2015年01期

3 吴永明;林育生;;某型计程仪发送装置测试系统设计与实现[J];船电技术;2014年06期

4 杨伟东;张云龙;李莉;刘权震;师占群;;基于CAN总线通信的程控电阻系统设计[J];河北工业大学学报;2014年03期

5 童子权;姜月明;任丽军;李莹莹;;全电子式有源程控电阻器的设计[J];哈尔滨理工大学学报;2014年03期

6 杨本全;陈爱华;马迎;叶锋;;基于MSP430F149的便携式智能直流电子负载系统设计[J];科技通报;2014年01期

7 刘懿俊;;开尔文四线测试方式在PCB测试机中的应用[J];机电工程技术;2013年09期

8 马云红;井哲;周德云;;一种任务分配问题的快速剪枝优化算法[J];西北工业大学学报;2013年01期

9 李小文;刘伟良;刘丽君;;基于FPGA的可编程电阻装置设计[J];铁道机车车辆;2012年06期

10 刘彬;钟明琛;;直流电子负载基本工作模式的测量不确定度评定[J];电子测量技术;2012年08期

相关硕士学位论文 前4条

1 黄殿臣;全电子式有源可调电阻器的研制[D];哈尔滨理工大学;2013年

2 马扬昭;Ta及Ta-N薄膜的制备与电学性能研究[D];湖南大学;2012年

3 王亚玲;能馈式交流电子模拟负载的研究[D];山东大学;2009年

4 陈圆圆;PEMFC单体电池电压检测器及电子负载的设计开发[D];上海交通大学;2008年



本文编号:2453733

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2453733.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户946b2***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com