基于粒子滤波的电力系统机电暂态状态估计研究
[Abstract]:As a kind of information measuring device, synchronous phasor measurement unit (phasor measurement unit,PMU) has been widely used in every link of power system operation, when the power system is in the electromechanical transient process, PMU can measure the phasor information of the running state of the system directly. However, because this information is measured by sensors and needs to be transmitted in a certain way, the end-used data will inevitably have random errors and bad data. In the aspect of power system security monitoring, in order to obtain more accurate control scheme or result, it is necessary to filter the actual measurement data before application. This paper presents a power system electromechanical transient state estimation method based on particle filter (Particle filtering,PF) algorithm. The main contents are as follows: firstly, the particle filter algorithm is deeply studied, which is based on the basic PF algorithm. In this paper, a PF algorithm based on sequential importance resampling (sequential importance resampling,SIR) is proposed. In order to verify the superiority of the proposed algorithm, the traditional extended Kalman filter (extended Kalman filter,EKF) algorithm, which is used to solve the nonlinear state estimation problem, is studied. In this paper, the comparison and analysis of the two algorithms are carried out theoretically. Secondly, the proposed particle filter algorithm based on SIR is applied to the actual state estimation of power system. Firstly, the operating state of the generator in the electromechanical transient process is estimated, and the fourth-order state space model of the generator is established, including the system equation and the observation equation. On the basis of the fourth-order model of generator, the noise error of state equation in transient process is analyzed, in order to evaluate the effect of quantitative estimation scientifically and reasonably, the correlation evaluation index of observation path based on Copula theory is put forward. Finally, the proposed method is applied to the electromechanical transient state estimation of the CEPRI7 node system, and the results are evaluated qualitatively and quantitatively from several angles. The results show that the estimation results based on PF have a high correlation with the actual results, and the root mean square error between the real values and the estimation results is small. The estimation effect is better than that of EKF, and the influence of the error data is reduced effectively. Finally, a method of electromechanical transient state estimation for the whole system is proposed. Based on the estimation of generator transient state, a direct solution of machine-network interface is proposed. The result of electromechanical transient state estimation of generator node is expressed by the variance of voltage phasor error of the whole system node. The whole system dynamic state estimation model considering generator transient process state estimation is established, and the accuracy of the whole system transient state estimation is improved by introducing the constraint of generator state estimation. Through the calculation and analysis of the simulation example, we can get the whole system state estimation method of power system transient process proposed in this paper, which can effectively filter out the random errors that may occur in the actual PMU measurement process. More accurate node voltage phasor values are obtained.
【学位授予单位】:东北电力大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TM732
【参考文献】
相关期刊论文 前10条
1 曹国亮;杨彦甫;王非;崔澜涛;荣宁;谷健;姚勇;;基于扩展卡尔曼的PDM-16QAM偏振态和载波相位快速跟踪[J];光学学报;2014年12期
2 王法胜;鲁明羽;赵清杰;袁泽剑;;粒子滤波算法[J];计算机学报;2014年08期
3 刘艳莉;戴胜;程泽;朱乐为;;基于有限差分扩展卡尔曼滤波的锂离子电池SOC估计[J];电工技术学报;2014年01期
4 夏楠;邱天爽;李景春;李书芳;;一种卡尔曼滤波与粒子滤波相结合的非线性滤波算法[J];电子学报;2013年01期
5 李青芯;汪德星;孙宏斌;吴文传;王晶;郭庆来;张伯明;;变电站状态估计的工程实践与效益分析[J];电力系统保护与控制;2012年12期
6 王宏健;王晶;边信黔;傅桂霞;;基于组合EKF的自主水下航行器SLAM[J];机器人;2012年01期
7 郭磊;鞠平;王红印;赵浚婧;;电力系统多台发电机参数的整体辨识[J];电力系统自动化;2011年17期
8 李青芯;孙宏斌;王晶;张伯明;吴文传;郭庆来;;基于零阻抗支路模型的变电站三相非线性状态估计方法[J];中国电机工程学报;2011年25期
9 彭伟;徐泰山;;电力系统动态等值中发电机的选择方法[J];电力系统自动化;2010年14期
10 熊宁;程浩忠;马则良;朱忠烈;姚良忠;张建平;傅业盛;;基于负荷裕度最大化的发电出力优化 (一)优化模型的提出[J];电力系统自动化;2009年19期
相关博士学位论文 前4条
1 孟军英;基于粒子滤波框架目标跟踪优化算法的研究[D];燕山大学;2014年
2 宋策;基于粒子滤波的目标跟踪技术研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2014年
3 李昱辰;基于粒子滤波的视频目标跟踪方法研究[D];兰州理工大学;2013年
4 曹蓓;粒子滤波改进算法及其应用研究[D];中国科学院研究生院(西安光学精密机械研究所);2012年
相关硕士学位论文 前3条
1 陈锋;卡尔曼滤波和卡尔曼预测方法的改进及其在结构损伤识别中的应用[D];厦门大学;2014年
2 邹s,
本文编号:2455501
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2455501.html