纳米化锂电池正极材料磷酸铁锂的研究
[Abstract]:Orthogonal olivine LiFePO_4 has the advantages of high theoretical capacity (170m Ahg-1), friendly environment, good thermal stability, high cycle performance (more than 2000 times), rich raw materials and low cost. It is a promising cathode material for lithium-ion batteries and has been widely used. However, the inherent defect of LiFePO_4 is that the electronic conductivity and lithium ion diffusion rate are very low, which seriously affects the actual capacity and rate performance of the material. In this paper, the synthesis of nano-LiFePO_4, from cheap industrial raw materials is as follows: firstly, the preparation of nano-FePO_4 was studied by using waste molten iron as Tie Yuan, diammonium hydrogen phosphate as phosphorus source and citric acid as surfactants. As a comparative experiment, the Fe PO_4 prepared by adding different mass citric acid was named FP-A (0 g citric acid) and FP-B (0.2 g citric acid), respectively. FP-C (0.4g citric acid) and FP-D (0.6g citric acid). The size, morphology and surface properties of Fe PO_4 were studied by scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR), respectively. The results show that the size of Fe PO_4 decreases with the increase of citric acid content. The size of FP-D is distributed in nanometer scale and the agglomeration is less. LiFePO_4/C cathode materials were synthesized by carbothermal reduction using precursor FePO_4, lithium carbonate and sucrose as raw materials. As a comparative experiment, the LiFePO_4/C synthesized by FP-A,FP-B,FP-C and FP-D is named LFP-A,LFP-B,LFP-C and LFP-D., respectively. The structure, size and electrochemical properties of cathode materials were studied by X-ray diffraction (XRD) (XRD), SEM, battery at constant current charge and discharge. The results show that the size and morphology of FePO_4 have an effect on LiFePO_4/C. The smaller the size of FePO_4, the more regular the morphology, the smaller the size of LiFePO_4/C cathode material and the less agglomeration. The test results at 0.1 C rate show that the addition of citric acid is not conducive to the increase of discharge capacity of LiFePO_4/C materials, but it can reduce the polarization and capacity attenuation of cathode materials and improve the rate cycle performance. Different contents of metal Mn~ (2) ions (0%, 5%, 8% and 10%) were used to doping LiFePO_4 materials. The structure, size, morphology and electrochemical characteristics of metal-doped cathode materials with different contents were studied by constant current charge-discharge of XRD,SEM, battery. The results show that the structure of the cathode material is not affected by Mn~ (2) doping, and the first discharge capacity of the Li Fe0.95Mn0.05PO_4 cathode material with Mn~ (2) doping content of 5% is the highest at 0.1 C rate. The effects of Mn~ (2) doping on electrode kinetics and lithium ion transport of cathode materials were studied by cyclic volt-ampere (CV) and electrochemical impedance spectroscopy (EIS).
【学位授予单位】:电子科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM912
【相似文献】
相关博士学位论文 前8条
1 马全新;锂离子电池富锂锰基正极材料与电极制备及改性研究[D];哈尔滨工业大学;2017年
2 马磊磊;高性能富锂锰基正极材料的表面重构及全电池性能分析[D];北京科技大学;2018年
3 冀转;过渡金属六氰配合物作为二次电池正极材料的应用研究[D];中国地质大学;2017年
4 王星博;锂离子电池富锂正极材料的结构表征与电化学性能研究[D];中国科学技术大学;2017年
5 刘永刚;硫化聚丙烯腈类正极材料的制备及储锂机制研究[D];北京科技大学;2018年
6 高鹏;锂离子电池富锂三元正极材料Li_(1+x)(NiCoMn)_yO_2的合成与性能研究[D];哈尔滨工业大学;2016年
7 王跃;高压LiCoPO_4正极材料的制备及电化学性能改善研究[D];北京科技大学;2018年
8 闵秀娟;磷酸钒锂基正极材料的结构与循环稳定性研究[D];哈尔滨工业大学;2017年
相关硕士学位论文 前10条
1 梁亚春;纳米化锂电池正极材料磷酸铁锂的研究[D];电子科技大学;2017年
2 井二宝;锂离子电池复合正极材料的研究[D];电子科技大学;2017年
3 解二娟;锂离子电池LiNi_xCo_yMn_zO_2正极材料的成分、合成工艺和纳米铜掺杂研究[D];广西大学;2017年
4 王钢;高性能锂离子电池层状富锂正极材料的制备及其改性研究[D];湘潭大学;2017年
5 杨涛;硫化锂正极材料的制备及电化学性能[D];浙江大学;2017年
6 罗垂意;无钴镍基正极材料理论计算与实验改性研究[D];江西理工大学;2017年
7 欧阳爵;氮氧双掺杂介孔碳材料用作锂空气电池正极催化剂的研究[D];哈尔滨工业大学;2017年
8 徐莲花;磷酸钒锂正极材料的制备及其性能研究[D];安徽工业大学;2017年
9 王晓艳;钒酸钠与铁氰化铁钠离子电池正极材料的合成及性能研究[D];合肥工业大学;2017年
10 翟配艳;高性能锂硫电池正极及隔膜修饰研究[D];曲阜师范大学;2017年
,本文编号:2496783
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2496783.html