通过调控形貌及晶型提高可溶液加工钙钛矿太阳能电池的性能研究
发布时间:2019-06-19 10:58
【摘要】:基于有机-无机卤化物钙钛矿材料的太阳能电池因其具有高的吸收系数、优异的双极性电荷迁移能力、较小的激子结合能、优异的光电转换效率并且成本低廉,引起人们的广泛关注。在短短几年的时间里,其光电转换效率已经突破22%,是通过开发溶液合成技术与成膜技术用以控制形貌和钙钛矿组分来实现的。因此,溶剂工程、界面工程以及钙钛矿层形貌与结晶度的调控等成为钙钛矿太阳能电池目前研究的一个重要方向。本论文主要着重于研究如何提高钙钛矿成膜质量以提高平面钙钛矿太阳能电池的器件性能,并开展了以下两方面工作:(1)使用纯溶剂(氯苯、异丙醇)和两者的混合溶剂分别来辅助一步法旋涂制备CH_3NH_3PbI_3和CH_3NH_3PbI_(3-x)Cl_x钙钛矿薄膜。通过纯溶剂处理和混合溶剂处理的CH_3NH_3PbI_3和CH_3NH_3PbI_(3-x)Cl_x钙钛矿薄膜在表面覆盖度以及晶粒尺寸上具有明显的差异。此外,本文还系统深入地研究了这两种类型的钙钛矿晶粒的成核与生长动力学机理。混合溶剂处理后形成了晶体数量少、结晶度低的CH_3NH_3PbI_3钙钛矿薄膜,导致器件的光电转化效率较低。然而,氯苯处理后的CH_3NH_3PbI_3钙钛矿薄膜表面均匀、晶体表面覆盖度和结晶度更高,相应的器件效率达到8.1%。相反,基于CH_3NH_3PbI_(3-x)Cl_x的钙钛矿电池在混合溶剂处理后得到了最优的器件效率(9.2%),而且器件具有高的重现性和低的光电流迟滞现象。这是由于混合溶剂处理后的CH_3NH_3PbI_(3-x)Cl_x薄膜表面形貌优异无孔洞、晶粒尺寸更大,使其对光的吸收更充分。这些结论将为纯溶剂及混合溶剂处理的CH_3NH_3PbI_3和CH_3NH_3PbI_(3-x)Cl_x钙钛矿太阳能电池在器件性能优化以及大面积应用中提供重要的指导意义。(2)通过将聚氨酯引入钙钛矿前驱体溶液来调控CH_3NH_3PbI_3钙钛矿晶体成核并降低结晶速率,获得了晶粒尺寸大且覆盖度高的钙钛矿薄膜,提高了器件的光电转换效率达到18.7%。通过这种方法可以获得微观上具有紧凑的微米级晶粒,宏观上光滑透亮的钙钛矿薄膜。此外,PU还可以平衡并稳定钙钛矿中电荷的均匀分布,同时抑制碘离子的迁移,提高了器件的稳定性并且几乎没有光电流迟滞效应。
[Abstract]:Solar cells based on organic-inorganic halide perovskite materials have attracted extensive attention because of their high absorption coefficient, excellent bipolar charge transfer ability, small exciton binding energy, excellent photoelectric conversion efficiency and low cost. In just a few years, the photoelectric conversion efficiency has exceeded 22%, which is realized by developing solution synthesis technology and film forming technology to control morphology and perovskite components. Therefore, solvent engineering, interface engineering and the regulation of perovskite layer morphology and crystallization have become an important research direction of perovskite solar cells at present. In this paper, we mainly focus on how to improve the film forming quality of perovskite to improve the device performance of planar perovskite solar cells, and carry out the following two aspects: (1) CH_3NH_3PbI_3 and CH_3NH_3PbI_ (3 鈮,
本文编号:2502295
[Abstract]:Solar cells based on organic-inorganic halide perovskite materials have attracted extensive attention because of their high absorption coefficient, excellent bipolar charge transfer ability, small exciton binding energy, excellent photoelectric conversion efficiency and low cost. In just a few years, the photoelectric conversion efficiency has exceeded 22%, which is realized by developing solution synthesis technology and film forming technology to control morphology and perovskite components. Therefore, solvent engineering, interface engineering and the regulation of perovskite layer morphology and crystallization have become an important research direction of perovskite solar cells at present. In this paper, we mainly focus on how to improve the film forming quality of perovskite to improve the device performance of planar perovskite solar cells, and carry out the following two aspects: (1) CH_3NH_3PbI_3 and CH_3NH_3PbI_ (3 鈮,
本文编号:2502295
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2502295.html