塔式光聚热发电地基云图超短期辐照功率预测系统研究
[Abstract]:In optical thermal power generation, cloud layer is one of the fundamental reasons that affect the irradiance, and its generation, elimination and movement will have an impact on the stability of power output. Therefore, the prediction of cloud motion trend in the range of mirror field is the key to realize the prediction of irradiation power. For medium and long term irradiance variation, it can be adjusted by energy storage device. However, the sudden change of irradiance will bring great interference to the system. In order to eliminate this influence, the temperature loss of the endothermic power generation system is compensated by adjusting the inlet low temperature fluid flow rate by the endothermic temperature control system. However, there is a minute stage pure lag in this control system, and a certain reaction time is needed when the clouds block the sun, and the temperature stability of the high temperature fluid at the outlet of the absorber can not be guaranteed during this period. Therefore, the prediction system can provide a feedforward signal for the temperature control system of the absorber, and overcome the pure lag (minute stage) of the control system from the ultra-short term prediction results. After a small fluctuation when the occlusion occurs, the fluid temperature at the outlet of the absorber can be quickly restored to stability. Different from the medium and long term prediction based on historical meteorological data and satellite cloud images, this study is based on foundation cloud images. The sun-centered target image is obtained by tracking and shooting system, and the cloud layer is observed and analyzed by computer vision technology. It has the characteristics of good real-time and high accuracy, and can meet the requirements of minute level ultra-short-term irradiation power prediction. In this paper, five aspects of system initialization, lens distortion correction, cloud layer detection, cloud layer matching and cloud layer prediction are systematically studied and verified. The specific research work of this paper includes: (1) using tracking bracket, CCD camera and wide-angle lens to form a tracking shooting system, the sun-centered cloud image is obtained, and the sun is obscured by the lens center shade. The data interaction between the tracking bracket and the PC end is realized by RS485 communication protocol, and the exposure automatic adjustment is realized by adjusting the exposure time and signal gain of the camera. (2) A correction model of barrel distortion is determined, and the correction method of bucket distortion of wide angle lens is completed by the correction method of multinomial address correction combined with concentric circle template, and obvious results are obtained. (3) an idea of cloud detection based on clustering and then classification is proposed, and a cloud layer detection algorithm based on color feature and K-Means clustering is proposed, and the detection results are evaluated. Compared with the gray threshold segmentation method, its detection effect is greatly improved. (4) the accurate matching results are obtained by using SIFT algorithm and error matching elimination method. On this basis, a large number of matching points can be obtained for the long time span matching method with an interval of more than one minute. According to the cloud slice tracking method, the matching point and outline point information of all areas of effective cloud layer are counted respectively, which fully reflects the uniqueness of cloud motion state. (5) according to the piecewise tracking results, a hierarchical prediction model combined with particle filter cloud prediction method is proposed, which can accurately predict the cloud movement within 4 minutes. The predicted cloud amount information is used to correspond to the variation of solar irradiance and irradiation power.
【学位授予单位】:西安理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TM615
【参考文献】
相关期刊论文 前10条
1 李天成;范红旗;孙树栋;;粒子滤波理论、方法及其在多目标跟踪中的应用[J];自动化学报;2015年12期
2 周游;张剑;周少武;王维;;一种改进的广角镜头数字图像畸变校正算法[J];计算技术与自动化;2015年03期
3 朱想;居蓉蓉;程序;丁宇宇;周海;;组合数值天气预报与地基云图的光伏超短期功率预测模型[J];电力系统自动化;2015年06期
4 杨达;王孝通;徐冠雷;战勇强;;一种基于图像分割和图像拼接技术的全天空云量估计方法[J];新型工业化;2014年08期
5 王法胜;鲁明羽;赵清杰;袁泽剑;;粒子滤波算法[J];计算机学报;2014年08期
6 许佩佩;刘建忠;周俊虎;岑可法;;塔式太阳能热发电接收器的研究进展[J];热能动力工程;2014年03期
7 梁秀红;窦龙江;于兴江;;仿射变换的应用[J];聊城大学学报(自然科学版);2013年04期
8 何宾;陶丹;彭勃;;高实时性F-SIFT图像拼接算法[J];红外与激光工程;2013年S2期
9 涂波;刘璐;刘一会;金野;汤俊雄;;一种扩展小孔成像模型的鱼眼相机矫正与标定方法[J];自动化学报;2014年04期
10 徐仙伟;杨雁莹;曹霁;;基于同心圆环模板的摄像机标定方法[J];科学技术与工程;2013年31期
相关会议论文 前2条
1 万霞;霍娟;吕达仁;;基于全天空图像的投影变换算法实现[A];S8 大气探测与仪器新技术、新方法[C];2012年
2 张磊;朱磊;;一种综合图像纹理和灰度特征的分割算法[A];通信理论与信号处理新进展——2005年通信理论与信号处理年会论文集[C];2005年
相关博士学位论文 前1条
1 邵伟;蒙特卡洛方法及在一些统计模型中的应用[D];山东大学;2012年
相关硕士学位论文 前9条
1 黄勇;改进的互信息与LDA结合的特征降维方法研究[D];华中师范大学;2016年
2 王渊民;基于SIFT算法的图像快速匹配系统设计[D];成都理工大学;2014年
3 鲁高宇;地基云图云状识别算法研究[D];南京信息工程大学;2014年
4 李林;基于地基云图的云量检测与云状识别[D];南京信息工程大学;2014年
5 张鹏;镜场天空云层的监测方法研究[D];浙江大学;2013年
6 冯伟;图像桶形畸变校正的研究与实现[D];北方工业大学;2011年
7 周元;基于块匹配和光流方程的视频运动信息提取[D];吉林大学;2006年
8 金伟;多镜头无缝拼接成像系统的设计与研究[D];浙江大学;2006年
9 徐培凤;基于图像处理的自动对焦和自动曝光算法研究[D];江苏大学;2005年
,本文编号:2504680
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2504680.html