考虑风电预测误差分布特性的机组组合模型与算法
[Abstract]:Energy is the key to the sustainable and rapid development of the economy and society, but the increasing shortage of the fossil energy and the deteriorating living environment make the traditional energy supply system facing a severe challenge. Therefore, clean renewable energy, such as wind power and solar energy, is constantly concerned. The wind power generation has become one of the main power sources of the power system because of its mature technology, better investment return effect and policy support. However, due to the randomness of wind energy, wind power can provide clean energy and reduce carbon emission, and also brings great challenges to the dispatching and operation of the power system. On the one hand, the random fluctuation of wind power is difficult to grasp accurately. Although the prediction of wind power has made great progress through long-term research, its prediction accuracy is still difficult to meet the needs of the actual project. Therefore, it is necessary to analyze and grasp the error characteristic of the prediction result on the basis of the existing prediction technology, so as to reduce the influence of the random fluctuation of the wind power on the decision-making behavior such as the combination of the unit and the economy, and realize the high-efficiency utilization of the wind power prediction information. On the other hand, the wind power of random fluctuation is difficult to coordinate with the traditional deterministic scheduling mode. The continuous increase of the wind power permeability brings great economic and environmental benefits to the system, and the uncertainty of the system operation is also increased, and the traditional deterministic unit combination and the economic dispatching mode obviously have difficulty in coping with the uncertainty caused by large-scale wind power access. Therefore, how to realize the effective connection between the volatility wind power and the deterministic unit combination is of great theoretical and practical significance to improve the operation economy and safety of the power system. In this paper, the accurate expression of the characteristic of the wind power prediction error is first studied, then its application in the unit combination is discussed, and the combination method of the unit considering the timing characteristics of the prediction error is put forward to improve the economy and safety of the wind power system. The main work can be summarized as follows: (1) The probability distribution characteristic of the wind power prediction error is studied, and the prediction error is fitted and analyzed by the parameter and the non-parameter estimation method, including the normal distribution, the Beta distribution, the T-location-scale distribution, and the non-parameter kernel density estimation method. And further improving the evaluation index of the fitting effect of the existing test probability density function. Using the actual wind power to predict the error data, the effects of different fitting methods and different fitting parameters on the fitting effect are compared and analyzed. (2) Considering the difference of the wind power prediction error under different power levels and different time periods, a method for fitting the error segment under the power-time sequence dimension is proposed, and the error fitting precision is improved by simultaneously segmenting the power and the time sequence. In view of the excessive partition problem, a section reduction method is proposed to solve the contradiction between the number of the packets and the fitting effect, so that the fitting precision is improved, and the fitting calculation amount is reduced, so that the method is more practical. The study shows that the method of fitting the error power-time-sequence feature can more accurately describe the distribution characteristics of the wind power prediction error. (3) A combined model of the combination of the prediction error timing distribution and the system standby classification can be considered at the same time. The model combines the timing characteristics of the prediction error with the timing characteristics of the combination of the units, so that the timing characteristics of the prediction error can be accurately grasped; meanwhile, the model is divided according to the traditional cost, the additional standby cost and the risk cost to different standby categories, And the model is solved by using a mixed particle swarm algorithm with a heuristic search principle.
【学位授予单位】:山东大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TM614
【相似文献】
相关期刊论文 前10条
1 郭宇;茹海鹏;郭宝刚;;电力分配系统中的机组组合问题[J];硅谷;2011年08期
2 蒋妮娜;张志学;刘超男;;不同约束下机组组合决策结果的分析[J];山东电力高等专科学校学报;2013年03期
3 朱翠兰,孙时春,,刘筱,周京阳,于尔铿;华中电网机组组合软件的开发与运用[J];华中电力;1995年05期
4 王民量,张伯明,夏清;考虑多种约束条件的机组组合新算法[J];电力系统自动化;2000年12期
5 王承民,郭志忠;电力市场环境下解决机组组合问题的新方法[J];电力自动化设备;2001年11期
6 王承民,郭志忠,于尔铿;确定机组组合的一种改进的动态规划方法[J];电网技术;2001年05期
7 王承民,郭志忠;机组组合问题的罚函数法[J];继电器;2001年11期
8 江健健,夏清,沈瑜,康重庆,许洪强,张元鹏;基于边际电价的短期机组组合求解新方法[J];清华大学学报(自然科学版);2001年Z1期
9 袁晓辉,袁艳斌,张勇传;电力系统中机组组合的现代智能优化方法综述[J];电力自动化设备;2003年02期
10 王海云,赵宏伟,张晓清;蒙特卡洛优化法在机组组合问题中的应用[J];后勤工程学院学报;2004年04期
相关会议论文 前6条
1 李晓磊;周京阳;于尔铿;潘毅;;电力系统机组组合研究综述[A];中国高等学校电力系统及其自动化专业第二十四届学术年会论文集(上册)[C];2008年
2 李晓磊;周京阳;于尔铿;潘毅;;改进线性混合整数规划法机组组合[A];中国高等学校电力系统及其自动化专业第二十四届学术年会论文集(上册)[C];2008年
3 郭文兰;韩学山;;基于模糊决策的最优机组组合[A];1994中国控制与决策学术年会论文集[C];1994年
4 谢俊;;考虑风电出力随机性的风—火机组组合建模(英文)[A];中国智能电网学术研讨会论文集[C];2011年
5 王楠;张黎明;满玉岩;;计及换电站电池充放电优化的机组组合模型[A];2013年中国电机工程学会年会论文集[C];2013年
6 赖晓平;王冰;;提高机组组合问题动态规划算法效率的有效方法[A];第二十二届中国控制会议论文集(下)[C];2003年
相关博士学位论文 前10条
1 龙丹丽;大规模电力系统机组组合问题的近似动态规划模型与算法[D];广西大学;2014年
2 周博然;含风电的机组组合模型及算法研究[D];浙江大学;2015年
3 郑海艳;机组组合基于Benders分解与割平面的方法及约束优化SQP算法研究[D];广西大学;2015年
4 邓俊;机组组合混合整数线性规划模型的研究与改进[D];广西大学;2015年
5 张娜;面向风电高不确定性的多周期机组组合研究[D];大连理工大学;2014年
6 车平;基于最优化的电力系统机组组合问题研究[D];东北大学;2012年
7 杨朋朋;机组组合理论与算法研究[D];山东大学;2008年
8 张利;电力市场中的机组组合理论研究[D];山东大学;2006年
9 谢毓广;计及网络安全约束和风力发电的机组组合问题的研究[D];上海交通大学;2011年
10 韩道兰;机组组合问题紧外逼近与内外逼近模型方法及优化问题QP-free算法研究[D];广西大学;2013年
相关硕士学位论文 前10条
1 李颖浩;电力系统机组组合问题的研究[D];浙江大学;2012年
2 谢上华;随机机组组合问题中情景生成与削减技术研究[D];湖南大学;2013年
3 诸言涵;基于序优化理论的大规模机组组合求解算法研究[D];华南理工大学;2015年
4 闫圆圆;基于向量序优化理论的大规模多目标机组组合问题研究[D];华南理工大学;2015年
5 李健成;考虑环境成本的含多类型能源的鲁棒机组组合问题[D];华南理工大学;2015年
6 龙杭;计及网络安全约束和需求侧低碳资源的机组组合研究[D];北京交通大学;2016年
7 徐勤;考虑风电不确定性的风电并网调度方法研究[D];江苏大学;2016年
8 王昭卿;考虑风电预测误差分布特性的机组组合模型与算法[D];山东大学;2016年
9 张晓丹;风电功率预测误差不确定性建模研究[D];北京交通大学;2016年
10 何小磊;电力系统机组组合问题的研究[D];上海交通大学;2009年
本文编号:2507686
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2507686.html