With the development of social economy and industrialization,the demand for clean and renewable energy is increasing.The renewable energy industry has also been supported by governments,and wind energy has the characteristics of wide distribution,large reserves and low pollution.Nowadays,China has further promoted the development and utilization of distributed wind power,while the small wind-collecting wind power generation system has low starting wind speed and is easy to install and use on the spot.A horizontal axis parabolic wind power generation system is designed,which also has the function of concentrating power generation.In order to design the blades suitable for the gathering wind field,the wind gathering field is simulated by Fluent,and the average wind speed expansion ratio after gathering wind and the wind speed distribution in the gathering wind field are obtained.The inlet section of the air duct with large edge wind speed and low central wind speed is selected as the blade installation section.Based on the theoretical calculation of the aerodynamic performance of the blade,the annual maximum power generation is the target,and the wind speed of the blade is designed according to the distribution of the wind speed.The genetic algorithm is used to optimize the blade torsion angle and chord length in the wind gathering field.The three-dimensional modeling of wind turbine blades is completed by solidworks.The transient simulation analysis of the performance of the wind turbine is carried out by Fluent sliding grid technology.According to the calculated blade torque,the blade output power is calculated.Compare different blade design methods,different mounting sections,and unmodified blades,and analyze them with examples.The results show that the blade obtained by the design method adopted in this paper has higher output power in the wind gathering field.Combined with the wind frequency distribution curve and the solar radiation intensity,the total annual power generation of the wind gathering concentrating system is calculated,and the optimal structural parameters of the power generation system are obtained with the maximum annual power generation as the standard.
【学位单位】:广西大学
【学位级别】:硕士
【学位年份】:2019
【中图分类】:TM315
【部分图文】:
1.3课题研究目的及内容??考虑到小型聚风型风力发电技术在分布式风电中有较好的前景,设计了一种抛物面??型聚风装置如图1.1,聚风罩同时兼具聚光功能,能有效提高能源利用效率。??j??i??j??I??,u?,?圓繊池,r?,r?ir??抛物面?I??^jxlixlfS??图1.1抛物面型聚风装置示意图??Fig.?1.1?Schematic?diagram?of?the?parabolic?wind?collecting?device??目前叶片的设计研究主要集中在大型风力机上,而对于小型聚风风场下叶片设计不??够充分,因此以所设计的聚风装置为对象,提出一种基于遗传算法修正来流风速,考虑??风频分布的叶片气动外形优化设计方法,并对所设计叶片气动性能进行研究,主要研究??工作包括:??1)

下表面压差的存在,从而对翼型表面产生升力。另一方面,由于空气与翼型截面间的相??互运动造成的冲击会对翼型产生阻力。升力与阻力的合力构成翼型的气动力。翼型受力??如图2.2所示。??三??图2.2翼型表面压差与受力??Fig.?2.2?Airfoil?surface?pressure?difference?and?force??其所受升力为FL,与风速方向垂直,受到阻力为FD,与风速方向一致,其合力对翼??型构成的气动力为F。其公式如下:??L=^pCLSV2?(2-1)??12??

??弦长—??图2.1翼型外形结构及参数??Fig.?2.1?Airfoil?outline?structure?and?parameters??2.1.2翼型气动特性??通常可将空气相对于翼型的运动划分为两部分,一部份为空气相对于翼型的环绕,??由于翼型上下表面之间长度不同,当来流空气流经翼型时,翼型上表面气流流速高,而??下表面流速低,根据伯努利理论,导致其上表面压力较低,而下表面压力较高,由于上??下表面压差的存在,从而对翼型表面产生升力。另一方面,由于空气与翼型截面间的相??互运动造成的冲击会对翼型产生阻力。升力与阻力的合力构成翼型的气动力。翼型受力??如图2.2所示。??三??图2.2翼型表面压差与受力??Fig.?2.2?Airfoil?surface?pressure?difference?and?force??其所受升力为FL,与风速方向垂直,受到阻力为FD,与风速方向一致,其合力对翼??型构成的气动力为F。其公式如下:??L=^pCLSV2?(2-1)??12??
【参考文献】
相关期刊论文 前10条
1 何如;谭敏玲;罗红磊;卢小凤;;南宁市横县地区风能资源评估[J];气象研究与应用;2015年03期
2 陈进;汪泉;李松林;郭小峰;王旭东;;翼型集成理论与B样条结合的风力机翼型优化设计方法研究[J];太阳能学报;2014年10期
3 汪泉;陈进;程江涛;王君;孙金风;游颖;;低噪声风力机翼型设计方法及实验分析[J];北京航空航天大学学报;2015年01期
4 戴彬彬;陆洁;龚曙光;;基于遗传算法的小型风力机叶片优化设计与三维仿真分析[J];机械设计;2014年06期
5 刘洁;陈凯;张兴;;聚风型风力机尾流的数值模拟研究[J];工程热物理学报;2013年11期
6 王龙;宋文萍;许建华;;基于Pareto遗传算法的风力机翼型多点优化设计[J];太阳能学报;2013年10期
7 马广兴;田德;韩巧丽;李明;;浓缩风能型风力发电机浓缩装置流场特性及试验[J];农业工程学报;2013年10期
8 章佳锋;官成钢;聂晶;王双保;赵彦立;刘文;;用于聚光和聚风一体化发电的聚风罩风场研究[J];风能;2013年02期
9 程爱珍;黄仁立;;广西太阳辐射分布特征及与气象要素关系分析[J];安徽农业科学;2012年35期
10 张明辉;万全喜;吴家龙;;基于Matlab与Solidworks方法的风力机叶片优化设计[J];流体机械;2012年11期
相关硕士学位论文 前3条
1 刘子铭;价值工程在风电项目生命周期管理中的应用[D];华北电力大学;2013年
2 包飞;风力机叶片几何设计与空气动力学仿真[D];大连理工大学;2009年
3 贾斌;全程变桨距风能转换装置的气动研究[D];内蒙古工业大学;2005年
本文编号:
2876708
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2876708.html