硫电极、电解质的结构优化及其对锂硫电池电化学性能的改善研究
发布时间:2020-12-11 01:59
现今社会不断涌现的智能电子产品和电动汽车需要开发高能量密度和高功率密度的电池。以硫作正极、锂作负极的锂硫电池是一种非常有前途的候选者,锂硫电池有着高达2500 Wh kg-1的理论比能量,是传统商业锂离子电池比能量的5倍以上。此外,硫作为一种价格低廉、环境友好的材料广泛存在于世界各地。因此,锂硫电池在过去20年中得到了储能研究者的大量研究。然而,锂硫电池有许多问题限制了它的商业化应用,主要包括:硫与其放电产物Li2S2/Li2S的导电率低,硫电极在充放电过程中体积膨胀大,多硫阴离子严重的“穿梭效应”和锂枝晶的生成。在醚类电解液体系中,可溶的多硫阴离子会在正极与负极之间来回迁移而造成“穿梭效应”,会严重降低锂硫电池的库伦效率与循环稳定性。此外,由于锂离子在金属锂表面的不稳定沉积而形成的树枝状锂枝晶可能会刺穿电池隔膜,引起电池内短路并带来安全隐患。针对这两个主要问题,本论文开展了如下研究:(1)将天然矿物硅藻土作为一种有效的多硫阴离子吸附剂应用于硫正极中以提高锂硫电池的循环性能硅藻土是一种具有丰富孔结构的生物沉积矿物材料,它主要由Si O2组成并含有少量的Fe2O3、Ca O、Mg O和有...
【文章来源】:中国地质大学湖北省 211工程院校 教育部直属院校
【文章页数】:162 页
【学位级别】:博士
【文章目录】:
作者简历
摘要
ABSTRACT
CHAPTER 1 INTRODUCTION
1.1 BACKGROUND
1.2 A BRIEF OVERVIEW OF THE LITHIUM SULFUR BATTERY
1.2.1 Historical development of the lithium sulfur battery
1.2.2 The structure and working principle of the lithium sulfur battery
1.2.3 The working mechanism of the lithium sulfur battery using an ether-based liquid electrolyte
1.2.4 The major problems in the lithium sulfur batteries
1.3 THE RECENT ADVANCES IN LITHIUM SULFUR BATTERIES
1.3.1 The progress of the cathodes of the lithium sulfur batteries
1.3.2 The progress of the novel battery configurations for Li-S systems
1.3.3 The progress of the binders for fabricating the sulfur electrode
1.3.4 The progress of the electrolytes for lithium sulfur batteries
1.3.5 The progress of stabilizing the lithium metal anode
1.4 THE PURPOSE AND CONTENT OF THE RESEARCH
CHAPTER 2 APPLICATION OF DIATOMITE AS AN EFFECTIVE POLYSULFIDES ADSORBENT FOR LITHIUM SULFUR BATTERIES
2.1 INTRODUCTION
2.2 EXPERIMENTAL
2.2.1 Materials
2.2.2 Preparation of sulfur cathode materials
2.2.3 Quantitative determination of the adsorption capacity of diatomite and acetylene black for polysulfides
2.2.4 Material characterization
2.2.5 Electrochemical measurements
2.3 RESULTS AND DISCUSSION
2.3.1 Physical properties of diatomite
2S6 solution"> 2.3.2 The adsorption capability of the diatomite and acetylene black for Li2S6 solution
2.3.3 Physical properties of the S-AB and S-DM-AB composites
2.3.4 Electrochemical properties of S-AB and S-DM-AB cathodes
2.3.5 Observation of the cathodes and anodes of the cells with S-AB and S-DM-AB cathodes after 100 cycles at 0.5 C
2.4 CONCLUSIONS
CHAPTER 3 EXPLORE THE INFLUENCE OF COVERAGE PERCENTAGE OF SULFUR ELECTRODE ON THE CYCLE PERFORMANCE OF LITHIUM SULFUR BATTERIES
3.1 INTRODUCTION
3.2 EXPERIMENTAL
3.2.1 Materials
3.2.2 Preparation of the pristine sulfur electrode
2O3 incorporated composite film and the sealed sulfur electrode"> 3.2.3 Preparation of the nano-Al2O3 incorporated composite film and the sealed sulfur electrode
3.2.4 Cell assembly
3.2.5 Electrochemical measurements
2O3 incorporated composite film"> 3.2.6 Estimation of the electrochemical double layer capacitance (EDLC) of the nano-Al2O3 incorporated composite film
3.2.7 Materials characterization
3.3 RESULTS AND DISCUSSION
3.3.1 XRD and TGA results
3.3.2 Comparison of battery performances
3.3.3 Electrochemical measurements of the cell with sealed sulfur electrode
3.3.4 Revealing the blocking effect of the sealed configuration
3.3.5 Insights into the sealing strategy
3.4 CONCLUSIONS
CHAPTER 4 IMPROVED CYCLING STABILITY OF SULFUR ELECTRODE BY A LI-NAFION-SUPPORTED SEALED CONFIGURATION
4.1 INTRODUCTION
4.2 EXPERIMENTAL
4.2.1 Materials
4.2.2 Preparation of the lithiated Nafion membrane and H-type Nafion membrane
4.2.3 Preparation of the pristine sulfur electrode
4.2.4 Preparation of the Li-Nafion-supported composite film and the Li-Nafion-sealed sulfur electrode
4.2.5 Cell assembly
4.2.6 Characterizations and measurements
4.3 RESULTS AND DISCUSSION
4.3.1 FTIR spectra comparison between the casted H-type Nafion and Li-Nafion membranes
4.3.2 Measuring the lithium ion transference number of the casted Li-Nafion membrane
4.3.3 Morphology and element distribution of the Li-Nafion-supported composite film
4.3.4 The physical characterizations of the sulfur cathode material
4.3.5 Measuring the electrochemical double layer capacitance (EDLC)
4.3.6 The electrochemical performance of the batteries
2O3-supported sealed configuration"> 4.3.7 Comparison of the cycling performances at 0.1 C between the Li-Nafion-supported and nano-Al2O3-supported sealed configuration
4.4 CONCLUSIONS
CHAPTER 5 A SAFE AND LONG LIFE LITHIUM METAL-SULFUR BATTERY ENABLED BY A SINGLE ION CONDUCTING BATTERY STRUCTURE
5.1 INTRODUCTION
5.2 EXPERIMENTAL
5.2.1 Materials
5.2.2 Synthesis
5.2.3 Preparation
5.2.4 Cells assemblies
5.2.5 Characterizations and measurements
5.3 RESULTS AND DISCUSSION
5.3.1 Structural analyses of precursors and grafted polymer
5.3.2 Structural analyses of S@PAN
5.3.3 Physical & Electrochemical properties of the blend polymer electrolyte membrane
5.3.4 "Li | electrolyte | Li" cells for galvanostatic cycling tests
5.4 CONCLUSIONS
CHAPTER 6 CONCLUSIONS
ACKNOWLEDGEMENTS
REFERENCES
本文编号:2909696
【文章来源】:中国地质大学湖北省 211工程院校 教育部直属院校
【文章页数】:162 页
【学位级别】:博士
【文章目录】:
作者简历
摘要
ABSTRACT
CHAPTER 1 INTRODUCTION
1.1 BACKGROUND
1.2 A BRIEF OVERVIEW OF THE LITHIUM SULFUR BATTERY
1.2.1 Historical development of the lithium sulfur battery
1.2.2 The structure and working principle of the lithium sulfur battery
1.2.3 The working mechanism of the lithium sulfur battery using an ether-based liquid electrolyte
1.2.4 The major problems in the lithium sulfur batteries
1.3 THE RECENT ADVANCES IN LITHIUM SULFUR BATTERIES
1.3.1 The progress of the cathodes of the lithium sulfur batteries
1.3.2 The progress of the novel battery configurations for Li-S systems
1.3.3 The progress of the binders for fabricating the sulfur electrode
1.3.4 The progress of the electrolytes for lithium sulfur batteries
1.3.5 The progress of stabilizing the lithium metal anode
1.4 THE PURPOSE AND CONTENT OF THE RESEARCH
CHAPTER 2 APPLICATION OF DIATOMITE AS AN EFFECTIVE POLYSULFIDES ADSORBENT FOR LITHIUM SULFUR BATTERIES
2.1 INTRODUCTION
2.2 EXPERIMENTAL
2.2.1 Materials
2.2.2 Preparation of sulfur cathode materials
2.2.3 Quantitative determination of the adsorption capacity of diatomite and acetylene black for polysulfides
2.2.4 Material characterization
2.2.5 Electrochemical measurements
2.3 RESULTS AND DISCUSSION
2.3.1 Physical properties of diatomite
2S6 solution"> 2.3.2 The adsorption capability of the diatomite and acetylene black for Li2S6 solution
2.3.3 Physical properties of the S-AB and S-DM-AB composites
2.3.4 Electrochemical properties of S-AB and S-DM-AB cathodes
2.3.5 Observation of the cathodes and anodes of the cells with S-AB and S-DM-AB cathodes after 100 cycles at 0.5 C
2.4 CONCLUSIONS
CHAPTER 3 EXPLORE THE INFLUENCE OF COVERAGE PERCENTAGE OF SULFUR ELECTRODE ON THE CYCLE PERFORMANCE OF LITHIUM SULFUR BATTERIES
3.1 INTRODUCTION
3.2 EXPERIMENTAL
3.2.1 Materials
3.2.2 Preparation of the pristine sulfur electrode
2O3 incorporated composite film and the sealed sulfur electrode"> 3.2.3 Preparation of the nano-Al2O3 incorporated composite film and the sealed sulfur electrode
3.2.4 Cell assembly
3.2.5 Electrochemical measurements
2O3 incorporated composite film"> 3.2.6 Estimation of the electrochemical double layer capacitance (EDLC) of the nano-Al2O3 incorporated composite film
3.2.7 Materials characterization
3.3 RESULTS AND DISCUSSION
3.3.1 XRD and TGA results
3.3.2 Comparison of battery performances
3.3.3 Electrochemical measurements of the cell with sealed sulfur electrode
3.3.4 Revealing the blocking effect of the sealed configuration
3.3.5 Insights into the sealing strategy
3.4 CONCLUSIONS
CHAPTER 4 IMPROVED CYCLING STABILITY OF SULFUR ELECTRODE BY A LI-NAFION-SUPPORTED SEALED CONFIGURATION
4.1 INTRODUCTION
4.2 EXPERIMENTAL
4.2.1 Materials
4.2.2 Preparation of the lithiated Nafion membrane and H-type Nafion membrane
4.2.3 Preparation of the pristine sulfur electrode
4.2.4 Preparation of the Li-Nafion-supported composite film and the Li-Nafion-sealed sulfur electrode
4.2.5 Cell assembly
4.2.6 Characterizations and measurements
4.3 RESULTS AND DISCUSSION
4.3.1 FTIR spectra comparison between the casted H-type Nafion and Li-Nafion membranes
4.3.2 Measuring the lithium ion transference number of the casted Li-Nafion membrane
4.3.3 Morphology and element distribution of the Li-Nafion-supported composite film
4.3.4 The physical characterizations of the sulfur cathode material
4.3.5 Measuring the electrochemical double layer capacitance (EDLC)
4.3.6 The electrochemical performance of the batteries
2O3-supported sealed configuration"> 4.3.7 Comparison of the cycling performances at 0.1 C between the Li-Nafion-supported and nano-Al2O3-supported sealed configuration
4.4 CONCLUSIONS
CHAPTER 5 A SAFE AND LONG LIFE LITHIUM METAL-SULFUR BATTERY ENABLED BY A SINGLE ION CONDUCTING BATTERY STRUCTURE
5.1 INTRODUCTION
5.2 EXPERIMENTAL
5.2.1 Materials
5.2.2 Synthesis
5.2.3 Preparation
5.2.4 Cells assemblies
5.2.5 Characterizations and measurements
5.3 RESULTS AND DISCUSSION
5.3.1 Structural analyses of precursors and grafted polymer
5.3.2 Structural analyses of S@PAN
5.3.3 Physical & Electrochemical properties of the blend polymer electrolyte membrane
5.3.4 "Li | electrolyte | Li" cells for galvanostatic cycling tests
5.4 CONCLUSIONS
CHAPTER 6 CONCLUSIONS
ACKNOWLEDGEMENTS
REFERENCES
本文编号:2909696
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/2909696.html