当前位置:主页 > 科技论文 > 电气论文 >

低速外转子永磁同步发电机的设计与优化

发布时间:2021-04-26 23:52
  近几年来,世界对清洁和可持续能源的需求不断增加,随之而来的是对低成本小型风力发电系统需求的增加,因为小型风力发电机被视为一种经济和灵活的发电解决方案。小型风力发电机的优点是在负荷中心附近发电,因此不需要运行高压输电线路,这非常适合风资源丰富的偏远地区。永磁同步发电机(PMSG)具有转矩大、无需外加励磁电流、具有变速运行能力等优点,因此永磁同步发电机是小型风力发电机的理想选择。此外,外转子永磁同步发电机是直接驱动运行的,它消除了系统中的齿轮箱,从而降低了成本和噪声,提高了系统的整体发电效率。本文主要研究直驱式小型外转子表面嵌装式永磁同步风力发电机的设计与优化。本文首先介绍了常用的风力发电系统,包括PMSG的类型和结构、永磁体的配置和定子绕组的布置。然后,建立了分析模型以确定小型永磁同步发电机永磁体基本电磁特性、主要尺寸、槽参数、槽数、极数和绕组结构。利用所建立的分析模型,在Matlab中开发了一套优化程序,根据给定的设计准则来寻找最优的发电机几何参数。根据优化结果设计了永磁同步发电机的结构。利用有限元法对所建立的模型进行了验证。采用Maxwell 2D有限元法分析了永磁同步发电机的详细特... 

【文章来源】:大连海事大学辽宁省 211工程院校

【文章页数】:89 页

【学位级别】:硕士

【文章目录】:
摘要
Abstract
Glossary of Symbols
1 Introduction
    1.1 Background and significance
    1.2 Generators for wind energy systems
        1.2.1 DC generators
        1.2.2 Induction generators
        1.2.3 Doubly fed induction generators
        1.2.4 Synchronous generators
    1.3 Research status of permanent magnet wind turbines abroad and in China
        1.3.1 Research status abroad
        1.3.2 Research status in China
    1.4 Objectives and outline of the thesis
2 Structure of PMSG for Wind Energy Systems
    2.1 Classification of PMSG
        2.1.1 Radial flux machines
        2.1.2 Axial flux machines
        2.1.3 Inner-rotor and outer-rotor PM machines
    2.2 Configurations of Permanent magnets
        2.2.1 Surface-mounted magnets
        2.2.2 Surface-inset magnets
        2.2.3 Buried magnets
    2.3 Stator winding in PMSG
        2.3.1 Distributed winding
        2.3.2 Concentrated winding
    2.4 Structure of outer-rotor surface-inset magnet generator
    2.5 Summary
3 Analytic Modeling of PMSG
    3.1 Introduction and Assumptions
    3.2 Geometrical modeling
    3.3 Magnetic flux density modeling
        3.3.1 Flux density in the air gap
        3.3.2 Flux density in stator teeth
        3.3.3 Flux density in stator and rotor yokes
    3.4 Electric modeling
        3.4.1 Resistance of one phase of the stator winding
        3.4.2 Inductances
        3.4.3 Induced phase voltage
        3.4.4 Current density
        3.4.5 Angle β
    3.5 Efficiency and power loss
    3.6 Combination of pole and slot number
    3.7 Summary
4 Structure Optimization Design of PMSG
    4.1 Objective of the optimization design
    4.2 The design procedure and objective function
        4.2.1 The design procedure
        4.2.2 Objective function
    4.3 Design variables and their ranges
    4.4 Given constants and Constraints
        4.4.1 Given constants
        4.4.2 Constraints
    4.5 Design results
    4.6 Summary
5 Finite Element Analysis and Experimental Test of PMSG
    5.1 Finite element simulation of PMSG
        5.1.1 Finite element analysis model
        5.1.2 Magnetic flux density distribution
        5.1.3 Magnetic flux line distribution
        5.1.4 Induced phase voltage waveform
        5.1.5 Torque analysis
    5.2 Influence of stator slot opening on flux density in the air gap
    5.3 Influence of stator slot shape on the performance of the PMSG
    5.4 Influence of permanent magnet parameters on the performance of the PMSG
        5.4.1 Influence of the thickness of permanent magnet on the no-load back EMF ofPMSG
        5.4.2 Influence of pole arc coefficient on the no-load back EMF of PMSG
        5.4.3 Influence of pole arc coefficient on the cogging torque of PMSG
    5.5 Coupling of FEM model with Simplorer and verification
    5.6 Surface-mounted PMSG and Surface-inset PMSG performance comparison
    5.7 Experimental test
    5.8 Summary
Conclusion and Future Works
参考文献
Appendix
Acknowledgement



本文编号:3162355

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/3162355.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户cdb79***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com