磺化聚醚醚酮质子交换膜的共混改性及在直接甲醇燃料电池的应用研究
发布时间:2021-11-11 13:40
随着化石能源的逐渐枯竭和环境污染的日趋严峻,开发新能源和新能量转换装置成为目前新能源领域的研究热点。直接甲醇燃料电池(Direct methanol fuel cell,DMFC)是一种将化学能直接转化成电能的装置,具有燃料来源广泛、比能量和比功率高、系统简单和环境友好等优点。质子交换膜(Proton exchange membrane,PEM)是直接甲醇燃料电池的核心部件,起到隔绝甲醇燃料渗透和提供质子传递通道的作用,PEM的性能优劣直接影响燃料电池的性能和使用寿命。目前,最常用的PEM为Dupont公司的Nafion系列膜,Nafion膜具有优良的质子导电性、高机械强度和化学稳定性,但Nafion的全氟骨架制备过程复杂,成本高,并会对环境造成污染,并且Nafion膜存在燃料渗透严重和高温低湿下质子导电性衰减等缺点,严重降低了直接甲醇燃料电池的能量密度和能量输出,所以开发高阻醇性能的新型聚合物质子交换膜替代Nafion是当前的研究热点。磺化聚醚醚酮(Sulfonated poly(ether ether ketone),SPEEK)是工程塑料聚醚醚酮的磺化产物,具有甲醇渗透率低、机械...
【文章来源】:中国地质大学湖北省 211工程院校 教育部直属院校
【文章页数】:160 页
【学位级别】:博士
【文章目录】:
作者简历
摘要
ABSTRACT
Chapter 1 Introduction
§1.1 Fuel Cell
1.1.1 Development of fuel cell
1.1.2 Proton exchange membrane fuel cell
1.1.3 Direct methanol fuel cell
§1.2 Proton exchange membrane
1.2.1 Property requirements of PEMs
1.2.2 Nafion membranes
1.2.3 Sulfonated aromatic polymer membranes
1.2.4 PEMs based on SPEEK
§1.3 Modified strategies to PEMs
1.3.1 Inorganic/organic composite membranes
1.3.2 Blending membranes
1.3.3 Semi‐interpenetrating polymer networks
§1.4 Research purpose and content
1.4.1 Research purpose
1.4.2 Research content
Chapter 2 Experiment
§2.1 Characterization of polymer
§2.2 Characterization of PEM
Chapter 3 Preparation and Property Investigation of Sulfonated Carbon Nanofibers Doped SPEEK Composite Membranes
§3.1 Experimental Section
3.1.1 Materials
3.1.2 Preparation of SCNFs
3.1.3 Sulfonation of PEEKK
3.1.4 Preparation of SCNFF/SPEEK composite membranes
§3.2 Characterization of the SCNF/SPEEK membranes
3.2.1 Morphology
3.2.2 Structure of the SCNF/SPEEK membranes
3.2.3 Thermal and Mechanical Properties
3.2.4 4Water uptakeandarea swelling
3.2.5 Proton conductivity and electric conductivity
3.2.6 Methanol permeability
§3.3 Chapter summary
Chapter 4 Preparation and Property Investigation of SPEEK/BPPO Blending Proton Exchange Membranes
§4.1 Experimental Section
4.1.1 Materials
4.1.2 Purification of BPPO
4.1.3 Sulfonation of PEEK
4.1.4 Preparation of membranes
§4.2 Characterization of the SPEEK/BPPO membranes
4.2.1 Chemical structure
4.2.2 Morphology
4.2.3 Thermal and mechanical properties
4.2.4 Water uptake and area swelling
4.2.5 Proton conductivity and methanol permeability
4.2.6 Cell performance
§4.3 Chapter summary
Chapter 5 Effect of Sulfonated/Non‐sulfonated Diamine Cross‐linkers on Properties of Semi‐Interpenetrating Membranes Based on SPEEK/BPPO
§5.1 Experimental Section
5.1.1 Materials
5.1.2 Preparation of SPEEK
5.1.3 Preparation of membranes
§5.2 Characterization of the semi-IPN membranes
5.2.1 Chemical structure
5.2.2 Morphology
5.2.3 Hydrophilic region dimension
5.2.4 Water uptake and area swelling
5.2.5 Contact angle
5.2.6 Mechanical property
5.2.7 Proton conductivity and methanol permeability
5.2.8 Oxidative stability
5.2.9 DMFC performance
§5.3 Chapter summary
Chapter 6 Effect of Structure and Polarity of Diamine Cross‐linkers on Properties of Semi‐Interpenetrating Membranes Based on SPEEK/BPPO
§6.1 Experimental Section
6.1.1 Materials
6.1.2 Preparation of SPEEK
6.1.3 Synthesis of sulfonated 9, 9‐Bis(4‐aminophenyl)fluorene (BAPFDS)
6.1.4 Preparation of membranes
§6.2 Characterization of the semi-IPN membranes
6.2.1 Chemical structure
6.2.2 Morphology
6.2.3 Thermal and mechanical properties
6.2.4 Oxidative stability
6.2.5 Hydrophilic/hydrophobic phase separation
6.2.6 TEM morphology
6.2.7 Water uptake and area swelling
6.2.8 Proton conductivity, methanol permeability and relative selectivity
6.2.9 Cell performance
§6.3 Chapter summary
Chapter 7 Effect of Content of Amine‐containing Crosslinking Networks on Properties of Semi‐Interpenetrating Membranes
§7.1 Experimental Section
7.1.1 Materials
7.1.2 Sulfonation of PEEK
7.1.3 Preparation of BPPO and C‐BP membranes
7.1.4 Preparation of semi‐IPN membranes
§7.2 Characterization of the semi-IPN membranes
7.2.1 Investigation of the crosslinking networks
7.2.2 Chemical structure of the semi‐IPN membrane
7.2.3 Proton conductivity
7.2.4 Methanol permeability
7.2.5 Water uptake and area swelling
7.2.6 Thermal stability and mechanical strength
7.2.7 DMFC performance
§7.3 Chapter summary
Chapter 8 Summary and prospect
§8.1 Summary
§8.2 Prospect
Acknowledgements
References
【参考文献】:
期刊论文
[1]氮杂环离子液体及其衍生物在高温质子交换膜中的应用研究进展[J]. 陈璐,张海宁. 化工进展. 2017(03)
[2]高温质子交换膜的研究进展[J]. 蔡聿星,刘闪闪,付念,丁会利. 材料导报. 2016(11)
[3]高温质子交换膜燃料电池用聚苯并咪唑/聚乙烯基苄基交联膜的制备与性能研究[J]. 郝金凯,姜永燚,王禛,李晓锦,邵志刚,衣宝廉. 电化学. 2015(05)
[4]高温质子交换膜燃料电池的研究进展(英文)[J]. Suthida Authayanun,Karittha Im-orb,Amornchai Arpornwichanop. 催化学报. 2015(04)
[5]质子交换膜的传输通道微观结构对燃料电池性能的影响[J]. 刘旭,吴俊涛,霍江贝,孟晓宇,崔立山,周琼. 化学进展. 2015(04)
[6]基于P2O5/SiO2与磺化聚醚醚酮合成的无机/有机复合质子交换膜[J]. 周道武,李海滨,谢强,邸志岗,陈小晶. 材料导报. 2014(06)
[7]基于膦酸基的高温质子交换膜的研究进展[J]. 韩帅元,岳宝华,严六明. 物理化学学报. 2014(01)
[8]中温质子交换膜燃料电池高质子传导率磺化芳香族聚合物膜[J]. 漆志刚,宫琛亮,梁宇,李辉,张树江,李彦锋. 化学进展. 2013(12)
[9]高温质子交换膜燃料电池用离子液体聚合物电解质的研究进展[J]. 屈树国,李建隆. 化工进展. 2012(12)
[10]高温质子交换膜研究进展[J]. 吴魁,解东来. 化工进展. 2012(10)
本文编号:3488955
【文章来源】:中国地质大学湖北省 211工程院校 教育部直属院校
【文章页数】:160 页
【学位级别】:博士
【文章目录】:
作者简历
摘要
ABSTRACT
Chapter 1 Introduction
§1.1 Fuel Cell
1.1.1 Development of fuel cell
1.1.2 Proton exchange membrane fuel cell
1.1.3 Direct methanol fuel cell
§1.2 Proton exchange membrane
1.2.1 Property requirements of PEMs
1.2.2 Nafion membranes
1.2.3 Sulfonated aromatic polymer membranes
1.2.4 PEMs based on SPEEK
§1.3 Modified strategies to PEMs
1.3.1 Inorganic/organic composite membranes
1.3.2 Blending membranes
1.3.3 Semi‐interpenetrating polymer networks
§1.4 Research purpose and content
1.4.1 Research purpose
1.4.2 Research content
Chapter 2 Experiment
§2.1 Characterization of polymer
§2.2 Characterization of PEM
Chapter 3 Preparation and Property Investigation of Sulfonated Carbon Nanofibers Doped SPEEK Composite Membranes
§3.1 Experimental Section
3.1.1 Materials
3.1.2 Preparation of SCNFs
3.1.3 Sulfonation of PEEKK
3.1.4 Preparation of SCNFF/SPEEK composite membranes
§3.2 Characterization of the SCNF/SPEEK membranes
3.2.1 Morphology
3.2.2 Structure of the SCNF/SPEEK membranes
3.2.3 Thermal and Mechanical Properties
3.2.4 4Water uptakeandarea swelling
3.2.5 Proton conductivity and electric conductivity
3.2.6 Methanol permeability
§3.3 Chapter summary
Chapter 4 Preparation and Property Investigation of SPEEK/BPPO Blending Proton Exchange Membranes
§4.1 Experimental Section
4.1.1 Materials
4.1.2 Purification of BPPO
4.1.3 Sulfonation of PEEK
4.1.4 Preparation of membranes
§4.2 Characterization of the SPEEK/BPPO membranes
4.2.1 Chemical structure
4.2.2 Morphology
4.2.3 Thermal and mechanical properties
4.2.4 Water uptake and area swelling
4.2.5 Proton conductivity and methanol permeability
4.2.6 Cell performance
§4.3 Chapter summary
Chapter 5 Effect of Sulfonated/Non‐sulfonated Diamine Cross‐linkers on Properties of Semi‐Interpenetrating Membranes Based on SPEEK/BPPO
§5.1 Experimental Section
5.1.1 Materials
5.1.2 Preparation of SPEEK
5.1.3 Preparation of membranes
§5.2 Characterization of the semi-IPN membranes
5.2.1 Chemical structure
5.2.2 Morphology
5.2.3 Hydrophilic region dimension
5.2.4 Water uptake and area swelling
5.2.5 Contact angle
5.2.6 Mechanical property
5.2.7 Proton conductivity and methanol permeability
5.2.8 Oxidative stability
5.2.9 DMFC performance
§5.3 Chapter summary
Chapter 6 Effect of Structure and Polarity of Diamine Cross‐linkers on Properties of Semi‐Interpenetrating Membranes Based on SPEEK/BPPO
§6.1 Experimental Section
6.1.1 Materials
6.1.2 Preparation of SPEEK
6.1.3 Synthesis of sulfonated 9, 9‐Bis(4‐aminophenyl)fluorene (BAPFDS)
6.1.4 Preparation of membranes
§6.2 Characterization of the semi-IPN membranes
6.2.1 Chemical structure
6.2.2 Morphology
6.2.3 Thermal and mechanical properties
6.2.4 Oxidative stability
6.2.5 Hydrophilic/hydrophobic phase separation
6.2.6 TEM morphology
6.2.7 Water uptake and area swelling
6.2.8 Proton conductivity, methanol permeability and relative selectivity
6.2.9 Cell performance
§6.3 Chapter summary
Chapter 7 Effect of Content of Amine‐containing Crosslinking Networks on Properties of Semi‐Interpenetrating Membranes
§7.1 Experimental Section
7.1.1 Materials
7.1.2 Sulfonation of PEEK
7.1.3 Preparation of BPPO and C‐BP membranes
7.1.4 Preparation of semi‐IPN membranes
§7.2 Characterization of the semi-IPN membranes
7.2.1 Investigation of the crosslinking networks
7.2.2 Chemical structure of the semi‐IPN membrane
7.2.3 Proton conductivity
7.2.4 Methanol permeability
7.2.5 Water uptake and area swelling
7.2.6 Thermal stability and mechanical strength
7.2.7 DMFC performance
§7.3 Chapter summary
Chapter 8 Summary and prospect
§8.1 Summary
§8.2 Prospect
Acknowledgements
References
【参考文献】:
期刊论文
[1]氮杂环离子液体及其衍生物在高温质子交换膜中的应用研究进展[J]. 陈璐,张海宁. 化工进展. 2017(03)
[2]高温质子交换膜的研究进展[J]. 蔡聿星,刘闪闪,付念,丁会利. 材料导报. 2016(11)
[3]高温质子交换膜燃料电池用聚苯并咪唑/聚乙烯基苄基交联膜的制备与性能研究[J]. 郝金凯,姜永燚,王禛,李晓锦,邵志刚,衣宝廉. 电化学. 2015(05)
[4]高温质子交换膜燃料电池的研究进展(英文)[J]. Suthida Authayanun,Karittha Im-orb,Amornchai Arpornwichanop. 催化学报. 2015(04)
[5]质子交换膜的传输通道微观结构对燃料电池性能的影响[J]. 刘旭,吴俊涛,霍江贝,孟晓宇,崔立山,周琼. 化学进展. 2015(04)
[6]基于P2O5/SiO2与磺化聚醚醚酮合成的无机/有机复合质子交换膜[J]. 周道武,李海滨,谢强,邸志岗,陈小晶. 材料导报. 2014(06)
[7]基于膦酸基的高温质子交换膜的研究进展[J]. 韩帅元,岳宝华,严六明. 物理化学学报. 2014(01)
[8]中温质子交换膜燃料电池高质子传导率磺化芳香族聚合物膜[J]. 漆志刚,宫琛亮,梁宇,李辉,张树江,李彦锋. 化学进展. 2013(12)
[9]高温质子交换膜燃料电池用离子液体聚合物电解质的研究进展[J]. 屈树国,李建隆. 化工进展. 2012(12)
[10]高温质子交换膜研究进展[J]. 吴魁,解东来. 化工进展. 2012(10)
本文编号:3488955
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/3488955.html