纳米碳材料在高性能锂硫电池中的应用研究
发布时间:2024-07-02 19:29
锂硫电池被认为是目前最有前景的新一代锂离子电池体系,有着极高的能量密度(2600 Wh kg-1),极高的理论容量(1675 mAh g-1)和较低的成本。但是,锂硫电池的应用仍存在一些问题,比如硫和电池放电产品硫化钠的绝缘性,电化学反应中间产物聚硫物质溶于电解液而造成的“穿梭效应”,还有硫化锂的体积膨胀等。所以,增强硫电极的导电性、提高电极材料对于体积膨胀的耐受性和抑制聚硫的扩散使其能被束缚在正极区域是发展锂硫电池的关键点。本文以NaCl-KCl和纳米碳酸钙作为双模版,通过热解葡萄糖—脲醛树脂—MOF MIL-53材料,制备得到了 μ-Al2O3修饰的定向介孔碳。葡萄糖—脲醛树脂与NaCl-KCl填充在MIL-53的孔道中可以避免碳化时候孔道的坍塌和黏连。纳米碳酸钙在MIL-53孔道外面,可以避免在碳化过程中形成密封孔。制备所得的定向介孔碳具有极高的比表面积和丰富的表面氧氮位点,对于聚硫有着极强的吸附力。硫电极展现了极高的放电容量、较长的寿命和极佳的倍率性能,在0.05 ℃下初始容量高达1626 mAh 以及10 ℃情况下有着430 mAh g-1的比容量。在0.2 ℃情况下,电池循...
【文章页数】:137 页
【学位级别】:博士
【文章目录】:
ACKNOWLEDGEMENTS
摘要
ABSTRACT
CHAPTER 1: BACKGROUND AND LITERATURE REVIEW
1.1 INTRODUCTION
1.2 PRINCIPLES OF LI-ION BATTERIES
1.3 PRINCIPLES OF LITHIUM-SULFUR BATTERIES
1.4 CONFIGURA LION LITHIUM-SULFUR AND LITHIUM-ION BATTERIES
1.5 CHALLENGES OF LI-S BATTERIES
1.5.1 Insulating active materials
1.5.2 Dissolution of polysulfides and the related shuttle effect
1.5.3 Corrosion of Lithium metal
1.5.4 Non soluble lithium sulfide and sulfur plating
1.5.5 Self-discharge
1.5.6 Volume expansion
1.6 RECENT ADVANCES IN LI-S BATTERIES
1.6.1 Sulfur cathodes
1.6.1.1 Sulfur-carbon nanocomposites
1.6.1.2 Sulfur-polymer nanocomposites
1.6.1.3 Polymer-supported sulfur-carbon nanocomposites
1.6.1.4 Li2S cathodes
1.6.1.5 Smaller sulfur molecules
1.6.1.6 Selenium cathodes
1.6.1.7 Polysulfide catholyte
1.6.1.8 Porous and free-electrodes current-collectors
1.6.2 Binder
1.6.3 Electrolytes
1.6.4 Lithium anode
1.6.5 Separators
1.7 APPLICATIONS
1.8 VOCABULARY, MAIN CHARACTERISTICS
1.9 SUMMARY
1.10 REFERENCES
CHAPTER 2: EXPERIMENTAL APPROACHES
2.1 CHEMICALS AND MATERIALS
2.2 CHARACTERIZATION METHODS
2.2.1 Scanning electron microscope (SEM)
2.2.2 X-ray photoelectron spectroscopy (XPS)
2.2.3 X-Ray diffraction (XRD)
2.2.4 In-situ Ultra-violet/Visible measurements
2.2.5 Transmission electron microscopy (TEM)
2.2.6 Brunaeur-emmer-teller (BET)
2.2.7 Thermogravimetric analysis (TGA)
2.3 PREPARATION OF POROUS CARBONS (PCS) AND POLYSULFIDE (PS)
2.3.1 Synthesis of oriented-macroporous-carbon (OMC)
2.3.2 Preparation of dehydrated watermelon rind (WR)
2.3.3 Preparation of starch
2.3.4 PS preparation
2.4 ELECTROCHEMICAL MEASUREMENT METHODS
2.4.1 Preparation of S-loaded porous carbons (S@PCs) and cathode
2.4.2 Cell assembly
2.4.3 Galvanostatic cycling
2.4.4 Cyclic voltammetry (CV)
2.4.5 Electrochemical impedance spectroscopy (EIS)
2.5 REFERENCES
CHAPTER 3:PERIODICAL ORIENTED-MACROPOROUS-CARBONINCORPORATED WITH Γ-AL2O3 FOR HIGH PERFORMANCE LI-S BATTERY
3.1 INTRODUCTION
3.2 RESULTS AND DISCUSSION
3.2.1 Characterization of oriented-macroporous-carbons
3.2.1.1 Morphology of the prepared oriented-macroporous-carbon material
3.2.1.2 TEM investigations
3.2.1.3 N2 adsorption-desorption isotherms and pore distributionsmeasurements
3.2.2 PS absorption with oriented-macroporous-carbon and XPS investigations
3.2.3 Electrochemical performance of oriented-macroporous-carbon
3.2.3.1 CV and galvanostatic cycleability measurements
3.2.3.2 Electrochemical impedance spectroscopy and rate performancemeasurements
3.2.3.3 Charge-discharge profiles and long-term cycle life
3.3 SUMMARY
3.4 REFERENCES
CHAPTER 4: PREPARATION AND APPLICATIONS OF MICROPOROUSCARBON DERIVED FROM BIOMASS FOR HIGH PERFORMANCE LI-SBATTERY
4.1 INTRODUCTION
4.2 Results and discussion
4.2.1 Material characterization
4.2.1.1 Morphology of WR
4.2.1.2 N2 absorption-desorption isotherms and pore size distributionsmeasurements
4.2.1.3 XRD patterns and TGA investigations
4.2.2 PS adsorption with WR
4.2.3 Electrochemical performance
4.2.3.1 CV profiles and galvanostatic cycleability measurements
4.2.3.2 Electrochemical impedance spectroscopy tests
4.2.3.3 Rate performance measurement
4.2.3.4 Performance in soft-package batteries
4.3 SUMMARY
4.4 REFENRENCES
CHAPTER 5: A NOVEL INSIGHT INTO CATHODE DETERIORATION OFHIGH ENERGY LI-S BATTERY WITH HEAVY SULFUR-LOADING
5.1 INTRODUCTION
5.2 RESULTS AND DISCUSSION
5.2.1 Materials and cathode characterization
5.2.1.1 Morphology of the porous carbon
5.2.1.2 N2 adsorption-desorption isotherms,pore size distribution and EDXanalysis
5.2.2 Electrochemical performance
5.2.2.1 Performance of pressurized cathode
5.2.2.2 Nyquist plots of pressed cell and cell appearance before and after cyclesunder an external pressure
5.2.2.3 Electrochemical performance of the cathode with heavy S-loading underpressure
5.3 SUMMARY
5.4 REFERENCES
CHAPTER 6: CONCLUSIONS AND FUTURE PROSPECTIVE
6.1 CONCLUSIONS
6.2 FUTURE PROSPECTIVE
LIST OF FIGURES
LIST OF TABLES
LIST OF PUBLICATIONS
本文编号:3999899
【文章页数】:137 页
【学位级别】:博士
【文章目录】:
ACKNOWLEDGEMENTS
摘要
ABSTRACT
CHAPTER 1: BACKGROUND AND LITERATURE REVIEW
1.1 INTRODUCTION
1.2 PRINCIPLES OF LI-ION BATTERIES
1.3 PRINCIPLES OF LITHIUM-SULFUR BATTERIES
1.4 CONFIGURA LION LITHIUM-SULFUR AND LITHIUM-ION BATTERIES
1.5 CHALLENGES OF LI-S BATTERIES
1.5.1 Insulating active materials
1.5.2 Dissolution of polysulfides and the related shuttle effect
1.5.3 Corrosion of Lithium metal
1.5.4 Non soluble lithium sulfide and sulfur plating
1.5.5 Self-discharge
1.5.6 Volume expansion
1.6 RECENT ADVANCES IN LI-S BATTERIES
1.6.1 Sulfur cathodes
1.6.1.1 Sulfur-carbon nanocomposites
1.6.1.2 Sulfur-polymer nanocomposites
1.6.1.3 Polymer-supported sulfur-carbon nanocomposites
1.6.1.4 Li2S cathodes
1.6.1.5 Smaller sulfur molecules
1.6.1.6 Selenium cathodes
1.6.1.7 Polysulfide catholyte
1.6.1.8 Porous and free-electrodes current-collectors
1.6.2 Binder
1.6.3 Electrolytes
1.6.4 Lithium anode
1.6.5 Separators
1.7 APPLICATIONS
1.8 VOCABULARY, MAIN CHARACTERISTICS
1.9 SUMMARY
1.10 REFERENCES
CHAPTER 2: EXPERIMENTAL APPROACHES
2.1 CHEMICALS AND MATERIALS
2.2 CHARACTERIZATION METHODS
2.2.1 Scanning electron microscope (SEM)
2.2.2 X-ray photoelectron spectroscopy (XPS)
2.2.3 X-Ray diffraction (XRD)
2.2.4 In-situ Ultra-violet/Visible measurements
2.2.5 Transmission electron microscopy (TEM)
2.2.6 Brunaeur-emmer-teller (BET)
2.2.7 Thermogravimetric analysis (TGA)
2.3 PREPARATION OF POROUS CARBONS (PCS) AND POLYSULFIDE (PS)
2.3.1 Synthesis of oriented-macroporous-carbon (OMC)
2.3.2 Preparation of dehydrated watermelon rind (WR)
2.3.3 Preparation of starch
2.3.4 PS preparation
2.4 ELECTROCHEMICAL MEASUREMENT METHODS
2.4.1 Preparation of S-loaded porous carbons (S@PCs) and cathode
2.4.2 Cell assembly
2.4.3 Galvanostatic cycling
2.4.4 Cyclic voltammetry (CV)
2.4.5 Electrochemical impedance spectroscopy (EIS)
2.5 REFERENCES
CHAPTER 3:PERIODICAL ORIENTED-MACROPOROUS-CARBONINCORPORATED WITH Γ-AL2O3 FOR HIGH PERFORMANCE LI-S BATTERY
3.1 INTRODUCTION
3.2 RESULTS AND DISCUSSION
3.2.1 Characterization of oriented-macroporous-carbons
3.2.1.1 Morphology of the prepared oriented-macroporous-carbon material
3.2.1.2 TEM investigations
3.2.1.3 N2 adsorption-desorption isotherms and pore distributionsmeasurements
3.2.2 PS absorption with oriented-macroporous-carbon and XPS investigations
3.2.3 Electrochemical performance of oriented-macroporous-carbon
3.2.3.1 CV and galvanostatic cycleability measurements
3.2.3.2 Electrochemical impedance spectroscopy and rate performancemeasurements
3.2.3.3 Charge-discharge profiles and long-term cycle life
3.3 SUMMARY
3.4 REFERENCES
CHAPTER 4: PREPARATION AND APPLICATIONS OF MICROPOROUSCARBON DERIVED FROM BIOMASS FOR HIGH PERFORMANCE LI-SBATTERY
4.1 INTRODUCTION
4.2 Results and discussion
4.2.1 Material characterization
4.2.1.1 Morphology of WR
4.2.1.2 N2 absorption-desorption isotherms and pore size distributionsmeasurements
4.2.1.3 XRD patterns and TGA investigations
4.2.2 PS adsorption with WR
4.2.3 Electrochemical performance
4.2.3.1 CV profiles and galvanostatic cycleability measurements
4.2.3.2 Electrochemical impedance spectroscopy tests
4.2.3.3 Rate performance measurement
4.2.3.4 Performance in soft-package batteries
4.3 SUMMARY
4.4 REFENRENCES
CHAPTER 5: A NOVEL INSIGHT INTO CATHODE DETERIORATION OFHIGH ENERGY LI-S BATTERY WITH HEAVY SULFUR-LOADING
5.1 INTRODUCTION
5.2 RESULTS AND DISCUSSION
5.2.1 Materials and cathode characterization
5.2.1.1 Morphology of the porous carbon
5.2.1.2 N2 adsorption-desorption isotherms,pore size distribution and EDXanalysis
5.2.2 Electrochemical performance
5.2.2.1 Performance of pressurized cathode
5.2.2.2 Nyquist plots of pressed cell and cell appearance before and after cyclesunder an external pressure
5.2.2.3 Electrochemical performance of the cathode with heavy S-loading underpressure
5.3 SUMMARY
5.4 REFERENCES
CHAPTER 6: CONCLUSIONS AND FUTURE PROSPECTIVE
6.1 CONCLUSIONS
6.2 FUTURE PROSPECTIVE
LIST OF FIGURES
LIST OF TABLES
LIST OF PUBLICATIONS
本文编号:3999899
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/3999899.html