变压器故障诊断用油中溶解气体新特征参量
本文关键词:变压器故障诊断用油中溶解气体新特征参量
更多相关文章: 电力变压器 故障诊断 油中溶解气体比值 支持向量机 遗传算法 IEC TC 数据库
【摘要】:油中溶解气体分析(dissolved gas analysis,DGA)是现场电力变压器故障诊断最常用的方法。然而,油中溶解气体含量较容易受到变压器结构、容量、故障位置以及故障程度等因素的影响,从而降低了变压器故障诊断的可靠性。为了提升变压器故障诊断正确率,该文提出了基于支持向量机(support vector machie,SVM)和遗传算法(geneti calgorithm,GA)优选的DGA新特征参量。首先,以28个DGA比值为输入,建立了基于SVM的变压器故障诊断模型;其次,采用GA同时对SVM参数和DGA比值进行优化,得到9个优选DGA比值作为变压器故障诊断用新特征参量。对IEC TC 10故障数据库的诊断结果表明:DGA新特征参量的故障诊断正确率为84%,较常用的DGA含量和IEC比值的诊断正确率提高10%~25%;并且无论采用哪种特征参量,支持向量机的诊断结果均优于神经网络诊断模型。最后,采用DGA新特征参量对国内117组变压器的故障诊断正确率达到了87.18%,再次验证了该方法的有效性。
【作者单位】: 中国电力科学研究院;
【关键词】: 电力变压器 故障诊断 油中溶解气体比值 支持向量机 遗传算法 IEC TC 数据库
【基金】:国家电网公司科技项目(GY 71-15-061)~~
【分类号】:TM407
【正文快照】: algorithm,GA)优选的DGA新特征参量。首先,以28个DGA比值为输入,建立了基于SVM的变压器故障诊断模型;其次,采用GA同时对SVM参数和DGA比值进行优化,得到9个优选DGA比值作为变压器故障诊断用新特征参量。对IEC TC 10故障数据库的诊断结果表明:DGA新特征参量的故障诊断正确率为84
【相似文献】
中国期刊全文数据库 前10条
1 苏宏升;李群湛;;概念格在变压器故障诊断中的应用研究[J];高电压技术;2006年02期
2 闫学杰;;煤矿变压器故障诊断的研究[J];煤矿现代化;2011年02期
3 王铮一;郑文杰;;基于基因表达式编程的变压器故障诊断[J];陕西电力;2012年04期
4 ;变压器故障诊断[J];电气制造;2012年05期
5 肖华兰;吴骏;;基于多分类相关向量机的变压器故障诊断[J];电子世界;2013年15期
6 ;《大型变压器故障诊断技术的研究》技术成果通过电力部鉴定[J];上海电力学院学报;1995年04期
7 张丰仁,张恩锋;气相色谱分析在变压器故障诊断中的应用[J];中国煤炭;2000年10期
8 马素媛;气相色谱法在电力变压器故障诊断中的实际应用[J];冶金动力;2000年05期
9 钱政,黄兰,严璋,罗承沐;集成模糊数学与范例推理的变压器故障诊断方法[J];电网技术;2001年09期
10 孙辉,李卫东,孙启忠;判决树方法用于变压器故障诊断的研究[J];中国电机工程学报;2001年02期
中国重要会议论文全文数据库 前10条
1 胡泽江;张海涛;;可拓关联函数与属性约简相结合的变压器故障诊断方法[A];2011年云南电力技术论坛论文集(入选部分)[C];2011年
2 周柯;罗安;;信息融合技术在变压器故障诊断中的应用[A];2009年全国输变电设备状态检修技术交流研讨会论文集[C];2009年
3 赵继印;李建坡;黎巧生;;基于气相色谱分析方法的变压器故障诊断系统[A];“振兴吉林老工业基地——科技工作者的历史责任”吉林省第三届科学技术学术年会论文集(上册)[C];2004年
4 李锐;;化学技术监督在变压器故障诊断中的应用[A];2009年云南电力技术论坛论文集(文摘部分)[C];2009年
5 李锐;;化学技术监督在变压器故障诊断中的应用[A];2009年全国输变电设备状态检修技术交流研讨会论文集[C];2009年
6 禹建丽;周瑞芳;;一种基于神经网络和模糊理论的变压器故障诊断[A];2013年中国智能自动化学术会议论文集(第四分册)[C];2013年
7 李锐;;化学技术监督在变压器故障诊断中的应用[A];2009年云南电力技术论坛论文集(优秀论文部分)[C];2009年
8 陈湘萍;;基于神经网络的变压器故障诊断[A];第八届全国信息获取与处理学术会议论文集[C];2010年
9 卞建鹏;廖瑞金;杨丽君;郑含博;;基于均值核聚类与二叉树支持向量机的变压器故障诊断新技术的研究[A];重庆市电机工程学会2010年学术会议论文集[C];2010年
10 于虹;张永刚;;基于模拟退火和支持向量机理论的变压器故障诊断方法[A];2011年云南电力技术论坛论文集(优秀论文部分)[C];2011年
中国重要报纸全文数据库 前1条
1 广西龙州县鸭水电厂 王f ;变压器故障诊断方法的探讨[N];中华合作时报;2004年
中国博士学位论文全文数据库 前10条
1 司马莉萍;基于改进支持向量机的电力变压器故障诊断与预测方法的研究[D];武汉大学;2012年
2 赵文清;基于数据挖掘的变压器故障诊断和预测研究[D];华北电力大学(河北);2009年
3 邓宏贵;可拓理论与关联分析及其在变压器故障诊断中的应用[D];中南大学;2005年
4 郑元兵;变压器故障诊断与预测集成学习方法及维修决策模型研究[D];重庆大学;2011年
5 尹金良;基于相关向量机的油浸式电力变压器故障诊断方法研究[D];华北电力大学;2013年
6 张利伟;油浸式电力变压器故障诊断方法研究[D];华北电力大学;2014年
7 陈舵;模糊聚类分析及其在电力变压器故障诊断中的应用研究[D];西安理工大学;2008年
8 唐勇波;数据驱动的大型电力变压器故障诊断和预测研究[D];中南大学;2013年
9 郑蕊蕊;智能信息处理理论的电力变压器故障诊断方法[D];吉林大学;2010年
10 苏宏升;软计算方法及其在电力系统故障诊断中的若干应用研究[D];西南交通大学;2007年
中国硕士学位论文全文数据库 前10条
1 刘飞霞;基于蚁群算法的变压器故障诊断研究[D];长沙理工大学;2014年
2 李江浩;基于改进神经网络的变压器故障诊断方法的研究[D];华北电力大学;2015年
3 隋卓;基于振动能量法的电力变压器故障诊断与初步定位研究[D];华北电力大学;2015年
4 李洪超;基于M-LS-SVM的变压器故障诊断研究[D];浙江工商大学;2015年
5 宋桐;多模型组合优化的变压器故障诊断策略研究[D];西安工程大学;2015年
6 裴飞;基于在线序列极限学习机的变压器故障诊断研究[D];华北电力大学;2015年
7 朱紫娟;综合故障诊断方法在电力变压器故障诊断中的应用研究[D];西安工程大学;2016年
8 洪浪;基于油气量和超高频局放信号的变压器故障诊断研究[D];湖北工业大学;2016年
9 王莹;变压器故障诊断中油溶气体基本信任分配函数研究[D];长春工业大学;2016年
10 陆静;蚁群算法在变压器故障诊断中的应用研究[D];南京航空航天大学;2008年
,本文编号:739560
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/739560.html