基于改进支持向量机算法的光伏发电短期功率滚动预测
本文关键词:基于改进支持向量机算法的光伏发电短期功率滚动预测
更多相关文章: 光伏发电 短期功率预测 粒子群优化 支持向量机 滚动预测
【摘要】:光伏发电具有明显的波动性与随机性,对其短期功率进行预测可以更准确地实现电网能量管理和运行调度。首先提出了一种基于粒子群优化支持向量机算法(PSO-SVM)的光伏发电短期功率滚动预测模型;通过寻找相似日,以相似日的实际功率和预测日的天气数据作为模型的输入量,对次日一天的发电功率进行预测;再以次日的实际输出功率与预测功率进行滚动对比,当预测点不满足给定预测精度时,以当日实测数据对后期预测点的功率进行修正预测。仿真算例表明所提光伏发电短期功率的滚动预测模型可以更精确地实现功率预测。
【作者单位】: 天津大学智能电网教育部重点实验室;
【关键词】: 光伏发电 短期功率预测 粒子群优化 支持向量机 滚动预测
【基金】:国家自然科学基金资助项目(51477111)
【分类号】:TM615
【正文快照】: 光伏发电因具有污染少、规模灵活等优点,得到了广泛应用[1]。但由于光伏发电系统受环境因素影响明显,存在不确定性、波动性、间歇性等特点,不利于电网的安全调度和能量管理,增加了电网的运行风险。因此,对光伏发电的短期功率进行预测,可以更加全面地反映光伏发电的不确定性,对
【相似文献】
中国期刊全文数据库 前10条
1 葛海峰;林继鹏;刘君华;丁晖;;基于支持向量机和小波分解的气体识别研究[J];仪器仪表学报;2006年06期
2 琚旭;王浩;姚宏亮;;支持向量机的一个边界样本修剪方法[J];合肥工业大学学报(自然科学版);2006年07期
3 张菁华;袁鑫;刘达;;基于支持向量机的电力工程最优投标报价决策研究[J];山东电力高等专科学校学报;2006年04期
4 张涛;段淑敏;;支持向量机在中医疾病症候诊断中的应用[J];华北水利水电学院学报;2007年03期
5 王晶;靳其兵;曹柳林;;面向多输入输出系统的支持向量机回归[J];清华大学学报(自然科学版);2007年S2期
6 陈丹;;多类支持向量机算法的研究[J];东莞理工学院学报;2007年05期
7 程丽丽;张健沛;马骏;;一种改进的加权边界调节支持向量机算法[J];哈尔滨工程大学学报;2007年10期
8 宋召青;崔和;胡云安;;支持向量机理论的研究与进展[J];海军航空工程学院学报;2008年02期
9 郭濵;孙晓梅;薛明;;基于壳向量的边界邻近支持向量机[J];黑龙江交通科技;2008年12期
10 许超;运士伟;舒云星;;基于支持向量机的混凝土测强换算模型[J];洛阳理工学院学报(自然科学版);2008年02期
中国重要会议论文全文数据库 前10条
1 余乐安;姚潇;;基于中心化支持向量机的信用风险评估模型[A];第六届(2011)中国管理学年会——商务智能分会场论文集[C];2011年
2 刘希玉;徐志敏;段会川;;基于支持向量机的创新分类器[A];山东省计算机学会2005年信息技术与信息化研讨会论文集(一)[C];2005年
3 史晓涛;刘建丽;骆玉荣;;一种抗噪音的支持向量机学习方法[A];全国第19届计算机技术与应用(CACIS)学术会议论文集(下册)[C];2008年
4 何琴淑;刘信恩;肖世富;;基于支持向量机的系统辨识方法研究及应用[A];中国力学大会——2013论文摘要集[C];2013年
5 刘骏;;基于支持向量机方法的衢州降雪模型[A];第五届长三角气象科技论坛论文集[C];2008年
6 王婷;胡秀珍;;基于组合向量的支持向量机方法预测膜蛋白类型[A];第十一次中国生物物理学术大会暨第九届全国会员代表大会摘要集[C];2009年
7 赵晶;高隽;张旭东;谢昭;;支持向量机综述[A];全国第十五届计算机科学与技术应用学术会议论文集[C];2003年
8 周星宇;王思元;;智能数学与支持向量机[A];2005年中国智能自动化会议论文集[C];2005年
9 颜根廷;马广富;朱良宽;宋斌;;一种鲁棒支持向量机算法[A];2006中国控制与决策学术年会论文集[C];2006年
10 侯澍e,
本文编号:953859
本文链接:https://www.wllwen.com/kejilunwen/dianlidianqilunwen/953859.html